


Lecture Notes in Computer Science 3901
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Patricia M. Hill (Ed.)

Logic Based
Program Synthesis
and Transformation

15th International Symposium, LOPSTR 2005
London, UK, September 7-9, 2005
Revised Selected Papers

13



Volume Editor

Patricia M. Hill
University of Leeds, School of Computing
Leeds LS2 9JT, UK
E-mail: hill@comp.leeds.ac.uk

Library of Congress Control Number: 2006921342

CR Subject Classification (1998): F.3.1, D.1.1, D.1.6, D.2.4, I.2.2, F.4.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-32654-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-32654-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11680093 06/3142 5 4 3 2 1 0



Preface

This volume contains a selection of papers presented at LOPSTR 2005, the 15th
International Symposium on Logic-Based Program Synthesis and Transforma-
tion, held September 7–9, 2005.

The aim of the LOPSTR series is to stimulate and promote international
research and collaboration on logic-based program development. Previous LOP-
STR events have been held in Manchester, UK (1991, 1992, 1998), Louvain-la-
Neuve, Belgium (1993), Pisa, Italy (1994), Arnhem, The Netherlands (1995),
Stockholm, Sweden (1996), Leuven, Belgium (1997), Venice, Italy (1999), Lon-
don, UK (2000), Paphos, Cyprus (2001), Madrid, Spain (2002), Uppsala, Sweden
(2003), Verona, Italy (2004). Since 1994 the proceedings have been published in
the LNCS series of Springer.

We would like to thank all those who submitted papers to LOPSTR. Overall,
we received 33 submissions (full papers and extended abstracts). Each submis-
sion was reviewed by at least three people. The committee decided to accept
17 of these papers for presentation and for inclusion in the pre-conference pro-
ceedings. This volume contains a selection of revised full versions of ten of these
papers. Thanks to all the authors of the accepted papers for the versions printed
here and their presentations of these papers at LOPSTR 2005. We would like to
thank François Fages for agreeing to give an invited talk and his contribution of
a short paper included in these proceedings.

I am very grateful to the Program Committee as well as all the external
reviewers for the reviewing of the submitted papers and invaluable help in the
selection of these papers for presentation.

The submission, reviewing, electronic Program Committee meeting and prepa-
ration of the pre-conference proceedings and these proceedings were greatly sim-
plified by the use of EasyChair (see http://www.easychair.org/). Special thanks
are therefore due to Andrei Voronkov, who developed and supports this system.

LOPSTR 2005 was held concurrently with SAS 2005, the Symposium on
Static Analysis in Imperial College, University of London. I would like to thank
the SAS 2005 organizers, and, particularly, Chris Hankin, who took on all the
hard work of the overall planning of the events.

LOPSTR 2005 was sponsored by ALP, the Association for Logic Program-
ming.

December 2005 Patricia M. Hill



Conference Organization

Program Chair

Patricia M. Hill

Program Committee

Maria Alpuente
Roberto Bagnara
Gilles Barthe
Annalisa Bossi
Giorgio Delzanno
John Gallagher
Lindsay Groves
Gopal Gupta
Michael Hanus
Michael Leuschel
Fabio Martinelli
Fred Mesnard
Andreas Podelski
Maurizio Proietti
German Puebla
C.R. Ramakrishnan
Abhik Roychoudhury
Wim Vanhoof

External Reviewers

Christel Baier Jesús Correas
Stephen-John Craig Vicent Estruch-Gregori
Julien Forest Angel Herranz
Frank Huch Siau-Cheng Khoo
Andy King Gabriele Lenzini
Jim Lipton Salvador Lucas
Sun Meng Alberto Pettorossi
Tamara Rezk Jaime Sánchez-Hernández
Josep Silva Fausto Spoto



Table of Contents

Temporal Logic Constraints in the Biochemical Abstract Machine
BIOCHAM

François Fages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1. Tools for Program Development

Declarative Programming with Function Patterns
Sergio Antoy, Michael Hanus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Transformational Verification of Parameterized Protocols Using Array
Formulas

Alberto Pettorossi, Maurizio Proietti, Valerio Senni . . . . . . . . . . . . . . . 23

Design and Implementation of AT : A Real-Time Action Description
Language

Luke Simon, Ajay Mallya, Gopal Gupta . . . . . . . . . . . . . . . . . . . . . . . . . 44

2. Program Transformations

An Algorithm for Local Variable Elimination in Normal Logic Programs
Javier Álvez, Paqui Lucio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Removing Superfluous Versions in Polyvariant Specialization of Prolog
Programs

Claudio Ochoa, Germán Puebla, Manuel Hermenegildo . . . . . . . . . . . . 80

Extension of Type-Based Approach to Generation of Stream-Processing
Programs by Automatic Insertion of Buffering Primitives

Kohei Suenaga, Naoki Kobayashi, Akinori Yonezawa . . . . . . . . . . . . . . 98

Non-leftmost Unfolding in Partial Evaluation of Logic Programs with
Impure Predicates

Elvira Albert, Germán Puebla, John P. Gallagher . . . . . . . . . . . . . . . . . 115

3. Software Development and Program Analysis

A Transformational Semantics of Static Embedded Implications of
Normal Logic Programs

Edelmira Pasarella, Fernando Orejas, Elvira Pino,
Marisa Navarro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



X Table of Contents

Converting One Type-Based Abstract Domain to Another
John P. Gallagher, Germán Puebla, Elvira Albert . . . . . . . . . . . . . . . . . 147

Experiments in Context-Sensitive Analysis of Modular Programs
Jesús Correas, Germán Puebla, Manuel V. Hermenegildo,
Francisco Bueno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



Temporal Logic Constraints in the
Biochemical Abstract Machine BIOCHAM

François Fages

INRIA Rocquencourt, France
Francois.Fages@inria.fr

Abstract. Recent progress in Biology and data-production technolo-
gies push research toward a new interdisciplinary field, named Systems
Biology, where the challenge is to break the complexity walls for reason-
ing about large biomolecular interaction systems. Pioneered by Regev,
Silverman and Shapiro, the application of process calculi to the descrip-
tion of biological processes has been a source of inspiration for many
researchers coming from the programming language community.

In this presentation, we give an overview of the Biochemical Abstract
Machine (BIOCHAM), in which biochemical systems are modeled using
a simple language of reaction rules, and the biological properties of the
system, known from experiments, are formalized in temporal logic. In
this setting, the biological validation of a model can be done by model-
checking, both qualitatively and quantitatively. Moreover, the temporal
properties can be turned into specifications for learning modifications or
refinements of the model, when incorporating new biological knowledge.

1 Introduction

Systems biology is a cross-disciplinary domain involving biology, computer sci-
ence, mathematics, and physics, aiming at elucidating the high-level functions
of the cell from their biochemical bases at the molecular level. At the end of
the Nineties, research in Bioinformatics evolved, passing from the analysis of
the genomic sequence to the analysis of post-genomic data and interaction net-
works (expression of RNA and proteins, protein-protein interactions, etc). The
complexity of these networks requires a large research effort to develop symbolic
notations and analysis tools applicable to biological processes and data.

Our objective with the design of the Biochemical Abstract Machine
BIOCHAM [1, 2] is to offer a software environment for modeling complex cell
processes, making simulations (i.e. “In silico experiments”), formalizing the bi-
ological properties of the system known from real experiments, checking them
and using them as specification when refining a model. The most original aspect
of our approach can be summarized by the following identifications:

biological model = transition system,
biological property = temporal logic formula,

biological validation = model-checking.

P.M. Hill (Ed.): LOPSTR 2005, LNCS 3901, pp. 1–5, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 F. Fages

2 Syntax of Biomolecular Interaction Rules

The objects manipulated in BIOCHAM represent molecular compounds, ranging
from small molecules to proteins and genes. The syntax of objects and reaction
rules is given by the following grammar:

object = molecule | molecule :: location
molecule = name | molecule-molecule |molecule~{name,...,name}
reaction = solution => solution | kinetics for solution => solution
solution = | object | number*object | solution+solution

The objects can be localized in space with the operator “::” followed by a
location name, such as the membrane, the cytoplasm, the nucleus, etc. The
binding operator - is used to represent the binding of a molecule on a gene,
the complexation of two proteins, and any form of intermolecular bindings. The
alteration operator “∼” is used to attach a set of modifications to a protein,
like for instance the set of its phosphorylated sites (as long as they impact its
activity).

Reaction rules express elementary biochemical interactions. There are essen-
tially seven main rule schemas :

– G => G + A for the synthesis of A by gene G,
– A => _ for the degradation of A,
– A + B => A-B for the complexation of two proteins A and B,
– A-B => A + B for the reversed decomplexation,
– A + B => A~{p} + B for the phosphorylation of protein A at site p catalyzed

by B,
– A~{p} + B => A + B for the reversed dephosphorylation,
– A::L => A::L’ for the transport of A from location L to L’.

The reaction rules can also be given with a kinetic expression, like for instance
0.1*[A][B] for A + B => A-B where a mass action law kinetics with constant
rate 0.1 is specified for the formation of the complex.

This rule-based language is used to model biochemical systems at three ab-
straction levels which correspond to three formal semantics: boolean, concentra-
tion (continuous dynamics) and population (stochastic dynamics).

A second language based on Temporal Logic [3] is used in BIOCHAM to
formalize the biological properties of the system, and validate a model by model-
checking [4, 5]. More precisely, symbolic and numerical model-checking tools are
used respectively for CTL in the boolean semantics, for LTL with constraints
over real numbers in the concentration semantics, and for PCTL with constraints
over integers in the stochastic semantics.

3 Boolean Semantics

The most abstract semantics is the boolean semantics which ignores kinetic ex-
pressions. In that semantics, a boolean variable is associated to each BIOCHAM



Temporal Logic Constraints in the Biochemical Abstract Machine 3

object, representing simply its presence or absence in the system. Reaction rules
are then interpreted as an asynchronous transition system over states defined by
the vector of boolean variables (similarly to the term rewriting formalism used in
[6]). A rule such as A + B => C + D defines four possible state transitions corre-
sponding to the possible consumption of the reactants: A∧B → A∧B ∧C ∧D,
A∧B → ¬A∧B ∧C ∧D, A∧B → A∧¬B ∧C ∧D, A∧B → ¬A∧¬B ∧C ∧D.
In that semantics, the choice of asynchrony and non-determinism is important
to represent basic biological phenomena such as competitive inhibition, where a
reaction “hides” another one because it consumes the reactants before the other
reaction can occur. Formally, the boolean semantics of a set of BIOCHAM rules
is defined by a Kripke structure K = (S, R) where S is the set of states defined
by the vector of boolean variables, and R ⊆ S × S is the transition relation
between states.

In that boolean semantics, Computation Tree Logic (CTL) formulae are used
to formalize the known biological properties of the system, and to query such
properties in a model. Given an initial state specifying the biological conditions
of the property, typical CTL formulae used in this context are :

– EF (P ), abbreviated as reachable(P), stating that the organism is able to
produce molecule P ;

– ¬E(¬Q U P ), abbreviated as checkpoint(Q,P), stating that Q is a checkpoint
for producing P ;

– EG(P ), abbreviated as steady(P), stating that the system can remain in-
finitely in a set of states described by formula P ;

– AG(P ), abbreviated as stable(P), stating that the system remains infinitely
in P and cannot escape;

– AG((P ⇒ EF ¬P ) ∧ (¬P ⇒ EF P )), abbreviated as oscil(P), a necessary
(yet not sufficient without strong fairness assumption) consition for oscilla-
tions w.r.t. the presence of molecule P ;

– AG((P ⇒ EF Q) ∧ (Q ⇒ EF P )), abbreviated as loop(P,Q), a necessary
condition for the alternance between states P and Q.

BIOCHAM evaluates CTL properties through an interface to the OBDD-based
symbolic model checker NuSMV [7]. This technology makes it possible to check
or query large models, like the model of the cell cycle control involving 165
proteins and genes, 500 variables and 800 reaction rules reported in [5].

4 Concentration Semantics

Basically the same scheme is applied to quantitative models, where each rule
is given with a kinetic expression. The concentration semantics associates to
each BIOCHAM object a real number representing its concentration. A set of
BIOCHAM reaction rules E={ei for Si⇒S′

i}i=1,...,n with variables {x1, ..., xm},
is then interpreted by the following set of (non-linear) ordinary differential equa-
tions (ODE) :

dxk/dt =
n∑

i=1

ri(xk) ∗ ei −
n∑

j=1

lj(xk) ∗ ej



4 F. Fages

where ri(xk) (resp. li) is the stoichiometric coefficient of xk in the right (resp. left)
member of rule i. Given an initial state, i.e. initial concentrations for each of the
objects, the evolution of the system is deterministic and numerical integration
methods compute discrete time series (i.e. linear Kripke structures) describing
the evolution of the concentrations over time.

The concentration semantics being deterministic, Linear Time Logic (LTL) is
used here to formalize the temporal properties. A first-order fragment of LTL is
used to express numerical constraints on the concentrations of the molecules, or
on their derivatives. For instance, F([A]>10) expresses that the concentration
of A eventually gets above the threshold value 10. Oscillation properties, abbre-
viated as oscil(M,K), are defined here as a change of sign of the derivative of
M at least K times. These LTL formulae with constraints are checked with an
ad-hoc model-checker implemented in Prolog, using the trace of the numerical
integration of the ODEs associated to the rules.

5 Population Semantics

The population semantics is the most realistic semantics. It associates to each
BIOCHAM object an integer representing the number of molecules in the system,
and interprets reaction rules as a continuous time Markov chain. The kinetic
expression ei for the reaction i is converted into a transition rate τi (giving a
transition probability after normalization) as follows [8]:

τi = ei × (Vi ×K)(1−
m
k=1 li(xk)) ×

m∏
k=1

(!li(xk))

where li is the stoichiometric coefficient of the reactant xk in the reaction rule i.
Stochastic simulation techniques [9] compute realizations of the process. They
are generally noisy versions of those obtained with the concentration semantics,
however qualitatively different behaviors may also appear when small number of
molecules are considered, which justifies the use of a stochastic dynamics.

In this setting, LTL formulae can be evaluated with their probability using a
Monte Carlo method, which has proved to be more efficient than existing model-
checkers for the probabilistic temporal logic PCTL. However, both the stochastic
simulation and the model-checking are computationally more expensive than in
the concentration semantics.

6 Learning Reaction Rules from Temporal Properties

Beyond making simulations, and checking properties of the models, the tem-
poral properties can also be turned into specifications and temporal logic con-
straints for automatically searching and learning modifications or refinements
of the model, when incorporating new biological knowledge. This is implemented
in BIOCHAM by a combination of model-checking and search in the three
abstraction levels.



Temporal Logic Constraints in the Biochemical Abstract Machine 5

This methodology is currently investigated with models of the cell cycle con-
trol (which regulates cell division) for the learning of kinetic parameter values
from LTL properties in the concentration semantics [10], and for the learning
of reaction rules from CTL properties in the boolean semantics [11]. A coupled
model of the cell cycle and the circadian cycle is under development along these
lines in BIOCHAM with applications to cancer chronotherapies.

Acknowledgements. This is a joint work with Nathalie Chabrier-Rivier, Syl-
vain Soliman and Laurence Calzone, with contributions from Sakina Ayata, Löıc
Fosse, Lucie Gentils, Shrivaths Rajagopalan and Nathalie Sznajder. Support and
fruitful discussions with our partners of the EU STREP project April-II are
warmly acknowledged.

References

1. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction
networks in the biochemical abstract machine BIOCHAM. Journal of Biological
Physics and Chemistry 4 (2004) 64–73

2. Chabrier, N., Fages, F., Soliman, S.: BIOCHAM’s user manual. INRIA.
(2003–2005)

3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
4. Chabrier, N., Fages, F.: Symbolic model cheking of biochemical networks. In

Priami, C., ed.: CMSB’03: Proceedings of the first Workshop on Computational
Methods in Systems Biology. Volume 2602 of Lecture Notes in Computer Science.,
Rovereto, Italy, Springer-Verlag (2003) 149–162

5. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling
and querying biochemical interaction networks. Theoretical Computer Science 325
(2004) 25–44

6. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sönmez, M.K.:
Pathway logic: Symbolic analysis of biological signaling. In: Proceedings of the
seventh Pacific Symposium on Biocomputing. (2002) 400–412

7. Cimatti, A., Clarke, E., Enrico Giunchiglia, F.G., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model checking.
In: Proceedings of the International Conference on Computer-Aided Verification,
CAV’02, Copenhagen, Danmark (2002)

8. Gibson, M.A., Bruck, J.: A probabilistic model of a prokaryotic gene and its
regulation. In Bolouri, H., Bower, J., eds.: Computational Methods in Molecular
Biology: From Genotype to Phenotype. MIT press (2000)

9. Gillespie, D.T.: General method for numerically simulating stochastic time evolu-
tion of coupled chemical-reactions. Journal of Computational Physics 22 (1976)
403–434

10. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: A machine learning ap-
proach to biochemical reaction rules discovery. In III, F.J.D., ed.: Proceedings of
Foundations of Systems Biology and Engineering FOSBE’05, Santa Barbara (2005)
375–379

11. Calzone, L., Chabrier-Rivier, N., Fages, F., Gentils, L., Soliman, S.: Machine
learning bio-molecular interactions from temporal logic properties. In Plotkin, G.,
ed.: CMSB’05: Proceedings of the third Workshop on Computational Methods in
Systems Biology. (2005)



Declarative Programming with Function Patterns�

Sergio Antoy1 and Michael Hanus2

1 Computer Science Dept., Portland State University, Oregon, USA
antoy@cs.pdx.edu

2 Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. We propose an extension of functional logic languages that allows the
definition of operations with patterns containing other defined operation symbols.
Such “function patterns” have many advantages over traditional constructor pat-
terns. They allow a direct representation of specifications as declarative programs,
provide better abstractions of patterns as first-class objects, and support the high-
level programming of queries and transformation of complex structures. More-
over, they avoid known problems that occur in traditional programs using strict
equality. We define their semantics via a transformation into standard functional
logic programs. Since this transformation might introduce an infinite number of
rules, we suggest an implementation that can be easily integrated with existing
functional logic programming systems.

1 Motivation

Functional logic languages (see [16] for a survey) integrate the most important fea-
tures of functional and logic languages to provide a variety of programming concepts to
the programmer. For instance, the concepts of demand-driven evaluation, higher-order
functions, and polymorphic typing from functional programming are combined with
logic programming features like computing with partial information (logic variables),
constraint solving, and non-deterministic search for solutions. This combination, sup-
ported by optimal evaluation strategies [6] and new design patterns [8], leads to better
abstractions in application programs such as implementing graphical user interfaces
[18] or programming dynamic web pages [19].

A functional logic program consists of a set of datatype definitions and a set of
functions or operations, defined by equations or rules, that operate on these types. For
instance, the concatenation operation “++” on lists can be defined by the following
two rules, where “[]” denotes the empty list and “x:xs” the non-empty list with first
element x and tail xs:

[] ++ ys = ys
(x:xs) ++ ys = x : xs++ys

Expressions are evaluated by rewriting with rules of this kind. For instance, [1,2]
++[3] evaluates to [1,2,3], where [x1,x2,...,xn] denotes x1:x2:...:xn:[], in
three rewrite steps:

� This work was partially supported by the German Research Council (DFG) under grant Ha
2457/5-1 and the NSF under grant CCR-0218224.

P.M. Hill (Ed.): LOPSTR 2005, LNCS 3901, pp. 6–22, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Declarative Programming with Function Patterns 7

[1,2]++[3] → 1:([2]++[3]) → 1:(2:([]++[3])) → [1,2,3]

Beyond such functional-like evaluations, functional logic languages also compute with
unknowns (logic variables). For instance, a functional logic language is able to solve an
equation like xs++[x]=:= [1,2,3] (where xs and x are logic variables) by guessing
the bindings [1,2] and 3 for xs and x, respectively.

This constraint solving capability can be exploited to define new operations using
already defined functions. For instance, the operation last, which yields the last ele-
ment of a list, can be defined as follows (the “where...free” clause declares logic
variables in rules):

last l | xs++[x]=:= l = x where xs,x free (last1)

In general, a conditional equation has the form l | c = r and is applicable for rewriting
if its condition c has been solved. A subtle point is the meaning of the symbol “=:=”
used to denote equational constraints. Since modern functional logic languages, like
Curry [17, 22] or Toy [25], are based on a non-strict semantics [6, 14] that supports lazy
evaluation and infinite structures, it is challenging to compare arbitrary, in particular
infinite, objects. Thus, the equality symbol “=:=” in a condition is usually interpreted as
strict equality—the equation t1 =:= t2 is satisfied iff t1 and t2 are reducible to the same
constructor term (see [13] for a more detailed discussion on this topic). A constructor
term is a fully evaluated expression; a formal definition appears in Section 3.

Strict equality evaluates both its operands to a constructor term to prove the validity
of the condition. For this reason, the strict equation “x =:= head []” does not hold for
any x. The operation head is defined by the single rule head (x:xs) = x. Therefore,
the evaluation of head [] fails to obtain a constructor term. While the behavior of “=:=”
is natural and intuitive in this example, it is less so in the following example.

A consequence of the strict equality in the definition of last in Display (last1) is
that the list argument of last is fully evaluated. In particular, last [failed,2], where
failed is an operation whose evaluation fails, has no result. This outcome is unnatural
and counterintuitive. In fact, the usual functional recursive definition of last would
produce the expected result, 2, for the same argument. Thus, strict equality is harmful
in this example (further examples will be shown later) since it evaluates more than one
intuitively requires and, thus, reduces the inherent laziness of the computation.

There are good reasons for the usual definition of strict equality [13]; we will see
that just dropping the strictness requirements in equational conditions leads to a non-
intuitive behavior. Therefore, we propose in this paper an extension of functional logic
languages with a new concept that solves all these problems: function patterns. Tra-
ditional patterns (i.e., the arguments of the left-hand sides of rules) are required to be
constructor terms. Function patterns can also contain defined operation symbols so that
the operation last is simply defined as

last (xs++[x]) = x

This definition leads not only to concise specifications, but also to a “lazier” behavior.
Since the pattern variables xs and x are matched against the actual (possibly unevalu-
ated) parameters, with this new definition of last, the expression last [failed,2]
evaluates to 2.



8 S. Antoy and M. Hanus

The next section defines the notations used in this paper. Section 3 defines the con-
cept of function patterns, and Section 4 shows examples of its use. Section 5 proposes an
implementation of function patterns and shows its performance on some benchmarks.
We compare our approach with related work in Section 6 and conclude in Section 7.

2 Preliminaries

In this section we review some notations for term rewriting [9, 10] and functional logic
programming [16] concepts used in the remaining of this paper.

Since polymorphic types are not important for our proposal, we ignore them and
consider a many-sorted signature Σ partitioned into a set C of constructors and a set
F of (defined) functions or operations. We write c/n ∈ C and f/n ∈ F for n-ary
constructor and operation symbols, respectively. Given a set of variables X , the set of
terms and constructor terms are denoted by T (C∪F ,X ) and T (C,X ), respectively. As
in the concrete syntax of Curry, we indicate the application of a function to arguments
by juxtaposition, e.g., f t1 . . . tn. A term is linear if it does not contain multiple occur-
rences of a variable. A term is operation-rooted (constructor-rooted) if its root symbol
is an operation (constructor). A head normal form is a term that is not operation-rooted,
i.e., it is a variable or a constructor-rooted term.

Given a signature Σ = (C,F), a functional logic program is set of rules of the form

f d1 . . . dn | c = e

where f/n ∈ F is the function defined by this rule, d1, . . . , dn are constructor terms
(also called patterns) such that the left-hand side f d1 . . . dn is linear, the condition c
(which can be omitted) is a constraint, and the right-hand side is an expression.1 A con-
straint is any expression of type Success, e.g., the trivial constraint success which
is always satisfied, the equational constraint t1 =:= t2 which is satisfied if both sides
are reducible to the same constructor term, or the conjunction c1 & c2 which is satisfied
if both arguments are satisfied (operationally, “&” is the basic concurrency combina-
tor since both arguments are evaluated concurrently). To provide a simple operational
meaning of conditional rules, we consider the rule “l | c = r” as equivalent to the
unconditional rule “l = cond c r” where the auxiliary operation cond is defined by

cond success x = x

Note that rules can overlap so that operations can be non-deterministic. For instance,
the rules

x ? y = x
x ? y = y

define a non-deterministic operation “?” that returns one of its arguments, and

insert x [] = [x]
insert x (y:ys) = x : y : ys ? y : insert x ys

define a non-deterministic insertion of an element into a list.
1 In the concrete syntax, the variables x1, . . . , xk occurring in c or e but not in the left-hand

side must be explicitly declared by a where-clause (where x1, . . . , xk free) to enable some
consistency checks.



Declarative Programming with Function Patterns 9

We need a few additional notions to formally define computations w.r.t. a given pro-
gram. A position p in a term t is represented by a sequence of natural numbers. Positions
are used to identify specific subterms. Thus, t|p denotes the subterm of t at position p,
and t[s]p denotes the result of replacing the subterm t|p by the term s (see [10] for
details). A substitution is an idempotent mapping σ : X → T (C ∪F ,X ). Substitutions
are extended to morphisms on terms in the obvious way. A rewrite step t → t′ is de-
fined w.r.t. a given program P if there are a position p in t, a rule l = r ∈ P with fresh
variables, and a substitution σ with t|p = σ(l) and t′ = t[σ(r)]p . A term t is called
irreducible or in normal form if there is no term s such that t→ s.

Functional logic languages also compute solutions of free variables occurring in
expressions by instantiating them to constructor terms so that a rewrite step becomes
applicable. The combination of variable instantiation and rewriting is called narrowing.
Formally, t �σ t′ is a narrowing step if σ(t) → t′ and t|p is not a variable for the
position p used in this rewrite step. Although the latter condition is a substantial restric-
tion on the possible narrowing steps, there are still too many possibilities to apply this
definition of narrowing in practice. Therefore, older narrowing strategies (see [16] for
a detailed account), influenced by the resolution principle, require that the substitution
used in a narrowing step is a most general unifier of t|p and the left-hand side of the
applied rule. As shown in [6], this condition prevents the development of optimal eval-
uation strategies. Therefore, many recent narrowing strategies relax this requirement
but provide other constructive methods to compute a small set of unifiers and positions
used in narrowing steps [5]. In particular, needed or demand-driven strategies perform
narrowing steps only if they are necessary to compute a result. For instance, consider
the following program containing a declaration of natural numbers in Peano’s notation
and operations for addition and a “less than or equal” test (the pattern “_” denotes an
unnamed anonymous variable):

data Nat = O | S Nat
leq O _ = True

add O y = y leq (S _) O = False
add (S x) y = S (add x y) leq (S x) (S y) = leq x y

Then the subterm t in the expression “leq O t” need not be evaluated since the
first rule for leq is directly applicable. On the other hand, the first argument of
“leq (add v w) O” must be evaluated to rewrite this expression. Furthermore, the
expression “leq v (S O)” becomes reducible after the instantiation of v to either O or
S z.

This strategy, called needed narrowing [6], is optimal for the class of inductively
sequential programs that do not allow overlapping left-hand sides. Its extension to more
general programs with possibly overlapping left-hand sides can be found in [3, 4]. A
precise description of this strategy with the inclusion of sharing, concurrency, and ex-
ternal functions is provided in [1]. In the following, we denote by t

∗
�σ t′ a sequence

of needed narrowing steps evaluating t to t′, where σ is the composition of all the sub-
stitutions applied in the sequence’s steps.



10 S. Antoy and M. Hanus

3 Function Patterns

As already mentioned, strict equality is the usual interpretation of equational conditions
in functional logic languages based on a non-strict semantics. Since this looks like a
contradiction, first we explain the reasons for using strict equality, then we explain our
proposal.

Strict equality holds between two expressions if both can be reduced to
a same constructor term. Consequently, strict equality is not reflexive; e.g.,
“head [] =:= head []” does not hold. One motivation for this restriction is the diffi-
culty of solving equations with a reflexive meaning in the presence of non-terminating
computations. For instance, consider the following functions:

from x = x : from (x+1)

rtail (x:xs) = rtail xs

Demanding reflexivity in equational conditions implies that the condition

rtail (from 0) =:= rtail (from 5)

should hold since both sides are reducible to rtail (from n) for every n ≥ 5. How-
ever, this is not a normal form, so it is unclear how far some side of the equation should
be reduced. Although this problem could be solved by an exhaustive search of the in-
finite reduction space (clearly not a practical approach), there are also problems with
reflexivity in the presence of infinite data structures. For instance, the condition

from 0 =:= from 0

should hold if “=:=” is reflexive. Since both sides describe the infinite list of natural
numbers, the condition

from 0 =:= from2 0

should also hold w.r.t. the definition

from2 x = x : x+1 : from2 (x+2)

Obviously, the equality of infinite structures defined by syntactically different functions
is undecidable in general (since this requires solving the halting problem). Therefore,
one needs to restrict the meaning of equational conditions to a non-reflexive interpre-
tation. Note that this condition is not specific to functional logic languages: Haskell
[27] also defines the equality symbol “==” as strict equality by default (this could be
changed by the use of type classes).

Although the previous examples have shown that there are good reasons to avoid
reflexivity of equality, one might think that the evaluation of some parts of an expres-
sion in an equational condition is unnecessary or even unintended, as discussed with
the function last defined in Section 1. For instance, one could propose to relax strict
equality as follows: to solve the equation x =:= t, bind x to t (instead of binding x to the
evaluation of t). Although in some cases, such as the operation last, this policy seems
to produce the desired behavior, in other cases it would lead to a non-intuitive behavior.
For instance, consider the function:

f x | x =:= from 0 = 99



Declarative Programming with Function Patterns 11

The expression “let x free in f x” would evaluate to 99 since x would be
bound to from 0 which would not be further evaluated. Similarly, “let x free in
(f x,99)” would evaluate to (99,99). However, the evaluation of “let x free
in (f x,f x)” would not terminate, since the evaluation of the equational condition
“from 0 =:= from 0” would not terminate. In fact, “f x” should be evaluated twice, the
first time with x unbound and the second time with x bound to “from 0”.

This example shows that a simple binding of logic variables to unevaluated expres-
sions is also problematic. Therefore, non-strict functional logic languages usually bind
logic variables only to constructor terms. However, pattern variables, i.e., variables oc-
curring in patterns, can be bound to unevaluated expressions. Thus, in order to relax the
strictness conditions in equational conditions, one needs a finer control over the kind of
involved variables, i.e., one needs to distinguish between logic variables that are bound
to constructor terms and pattern variables that can be bound to unevaluated expressions.
For this purpose, we propose to use function patterns as an intuitive and simple solution
to the problems discussed above. We explain the details below.

A function pattern is a pattern that contains, in addition to pattern variables and con-
structor symbols, defined operation symbols. For instance, if “++” is the list concate-
nation operation defined in Section 1, (xs++[x]) is a function pattern. Using function
patterns, we can define the function last as

last (xs++[x]) = x (last2)

This definition not only is concise but also introduces xs and x as pattern variables rather
than logic variables as in definition (last1) above. Since pattern variables can be bound
to unevaluated expressions, last returns the last element of the list without evaluating
any element of the list. For instance, last [failed,2] evaluates to 2, as intended.

To extend functional logic languages with function patterns, we have to clarify two
issues: what is the precise meaning of function patterns, and how are operations defined
using function patterns executed? We prefer to avoid the development of a new theory of
such extended functional logic programs and to reuse existing results about semantics
and models of traditional functional logic programs (e.g., [14]). Therefore, we define
the meaning of such programs by a transformation into standard programs. The basic
idea is to transform a rule containing a function pattern into a set of rules where the
function pattern is replaced by its evaluation(s) to a constructor term.

Consider the definition (last2) above. The evaluations of xs++[x] to a constructor
term are

xs++[x]
∗
�xs �→[] [x]

xs++[x]
∗
�xs �→[x1] [x1,x]

xs++[x]
∗
�xs �→[x1,x2] [x1,x2,x]

. . .

Thus, the single rule (last2) is an abbreviation of the set of rules

last [x] = x
last [x1,x] = x
last [x1,x2,x] = x
...



12 S. Antoy and M. Hanus

These rules exactly describe the intended meaning of the operation last. Obviously,
this transformation cannot be done at compile time since it may lead to an infinite
set of program rules. Therefore, in Section 5 we discuss techniques to perform this
transformation at run time. The basic idea is, for an invocation of last with argument
l, to compute the single ordinary (constructor) pattern p of the rule that would be fired
by that invocation and to match, or more precisely to unify since we narrow, l and p.

This idea has two potential problems. First, we have to avoid its potential underly-
ing circularity. Evaluating a function pattern must not involve executing the operation
being defined since its definition is not available before the function pattern has been
evaluated. For instance, a rule like

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

is not allowed since the meaning of the function pattern (xs++ys) depends on the def-
inition of “++”. In order to formalize such dependencies, we introduce level mappings.

Definition 1. A level mapping l for a functional logic program P is a mapping from
functions defined in P to natural numbers such that, for all rules f t1 . . . tn | c = e, if g
is a function occurring in c or e, then l(g) ≤ l(f). �

For instance, consider the program P consisting of the rule (last1) and the rules defining
“++”. Then l(++) = 0 and l(last) = 1 is a possible level mapping for P . Using level
mappings, we can define the class of acceptable programs.

Definition 2. A functional logic program P with function patterns is stratified if there
exists a level mapping l for P such that, for all rules f t1 . . . tn | c = e, if g is a defined
function occurring in some ti (i ∈ {1, . . . , n}), then l(g) < l(f). �

The restriction to stratified programs ensures that, if an operation f is defined using a
function pattern p, the evaluation of p to a constructor term does not depend, directly or
indirectly, on f .

The second potential problem of our intended transformation of rules containing
function patterns is nonlinearity. For instance, consider the operation idpair defined by

idpair x = (x,x)

and the rule

f (idpair x) = 0 (f1)

After evaluating the function pattern (idpair x), the rule (f1) would be transformed
into

f (x,x) = 0 (f2)

However, this rule is not left-linear and therefore is not allowed in traditional functional
logic programs. Relaxing the left-linearity condition on rules is not viable since it
causes difficulties similar to those we discussed for relaxing strict equality. Usually,
the intended meaning of multiple occurrences of a variable in the left-hand side is that
the actual arguments at these variables’ positions should be equal in the sense of an



Declarative Programming with Function Patterns 13

equational condition [4]. This can be expressed by introducing new pattern variables
and equational conditions. Thus, the rule (f2) is finally transformed into the valid rule

f (x,y) | x=:=y = 0

The above considerations motivate the following interpretation of functional logic pro-
grams with function patterns.

Definition 3. Let P be a stratified functional logic program with function patterns. The
meaning of P is the program P ∗ defined by:

P ∗ = {lin(f t1 . . . tn | σ(c) = σ(e)) s.t. f e1 . . . en | c = e ∈ P,

(e1, . . . , en) ∗
�σ (t1, . . . , tn), and

t1, . . . , tn are constructor terms}

where lin denotes the linearization of a rule defined by

lin(l | c = r) =

⎧⎨
⎩

l | c = r if l is linear;

lin(l[y]q | (x =:= y & c) = r) if l|p = x = l|q, p �= q,
x is a variable and y is fresh. �

The associated program P ∗ is well defined (since P is stratified) and a valid functional
logic program, since the patterns in the left-hand sides are linear constructor terms.
Since function patterns are transformed into ordinary patterns, the variables occurring
in function patterns become ordinary pattern variables that can be bound to unevalu-
ated expressions. Thus, function patterns relax the strict evaluation conditions of strict
equality without any difficulties. The only potential problem is the generation of an in-
finite number of rules for P ∗ in case of function patterns involving recursive functions.
Therefore, we show in Section 5 a transformation, executed at run time, that generates
only the rules that are required for a specific application of an operation defined by a
function pattern.

4 Examples

In this section we present a few more examples of programs that use function patterns.
The following example makes essential use of function patterns. The proposed design
would not work with strict equality.

Example 1. This example is a problem of the 1993 East-Central Regionals of the ACM
International Collegiate Programming Contest. Given a number n, we form the chain
of n by:

(1) arranging the digits of n in descending order,
(2) arranging the digits of n in ascending order,
(3) subtracting the number obtained in (2) from the number obtained in (1) to form a

new number, and
(4) repeating these steps for the new number.



14 S. Antoy and M. Hanus

E.g., the chain of 123 is 198, 792, 693, 594, 495, 495. . . The problem is to compute
the length of the chain up to the first repeated number—seven for 123.

The implementation is simpler if one separates the task of constructing the chain of
a number from the task of finding the first repeated element in the chain. The solution
of the problem is obtained by (“.” denotes function composition):

lengthUpToRepeat . chain

where the function chain constructs the chain of a number and the function
lengthUpToRepeat measures the length of the chain up to the first repeated element.
The latter function, coded below, uses a function pattern.

lengthUpToRepeat (p++[r]++q)
| nub p == p && elem r p
= length p + 1

The pattern breaks the infinite chain of a number into a prefix p, the first repeated ele-
ment r, and the rest of the chain q. The symbols nub and elem denote library functions.
nub removes repeated elements from a list. Hence, the condition nub p == p ensures that
there are no repeated elements in p. elem tells whether an element is a member of list.
The conjunction of the two conditions ensures that r is the first repeated element in the
chain.

By contrast, an implementation that uses strict equality, i.e., that attempts to solve
p++[r]++q =:= chain n, would be flawed. By design, chain n is an infinite list,
and therefore strict equality would not terminate. �

The second example shows the use of function patterns to specify transformations in
tree-like structures.

Example 2. This example addresses the simplification of symbolic arithmetic expres-
sions. E.g., 1 ∗ (x + 0) simplifies to x. We define expressions as

data Exp = Lit Int | Var [Char] | Add Exp Exp | Mul Exp Exp

The following non-deterministic function, evalTo, defines a handful of expressions
that for every expression e evaluate to e itself. Obviously, many more are possible, but
the following ones suffice to make our point.

evalTo e = Add (Lit 0) e
? Add e (Lit 0)
? Mul (Lit 1) e
? Mul e (Lit 1)

The following function replaces in an expression a subexpression identified by a posi-
tion with another subexpression.

replace - [] x = x
replace (Add l r) (1:p) x = Add (replace l p x) r
replace (Add l r) (2:p) x = Add l (replace r p x)
replace (Mul l r) (1:p) x = Mul (replace l p x) r
replace (Mul l r) (2:p) x = Mul l (replace r p x)



Declarative Programming with Function Patterns 15

Observe that replace c p e, where c is a “context”, p is a position and e is an ex-
pression, is the term replacement operation denoted by c[e]p in Section 2. Finally, the
simplification operation, simplify, replaces in a context c an expression that evaluates
to x with x itself. p is the position of the replacement in the context.

simplify (replace c p (evalTo x)) = replace c p x

E.g., if t1 = Mul (Lit 1) (Add (Var "x") (Lit0)), then simplify t1 evaluates to
t2 = Add (Var"x") (Lit 0) and simplify t2 evaluates to Var "x". If an expression
t cannot be simplified, simplify t fails; otherwise, it non-deterministically executes
a single simplification step. The application of repeated simplification steps to an ex-
pression until no more simplification steps are available can be controlled by Curry’s
search primitives [21]. Note that this example shows two useful applications of func-
tion patterns: the possibility to define abstractions for complex collections of patterns
(via operation evalTo) and the ability to specify transformations at arbitrary positions
inside an argument (via operation replace). The latter technique can be also exploited
to formulate queries on expressions. For instance, the operation

varInExp (replace c p (Var v)) = v

non-deterministically returns a variable occurring in an expression. One can easily ex-
tract all variables occurring in an expression, by wrapping this operation with search
primitives like findall [21]. �

Thus, function patterns are handy to provide executable high-level definitions of com-
plex transformation tasks and queries on tree-like structures. Further examples of this
kind (which we omit due to space limitations) are transformations and queries of XML
terms.

5 Implementation

The transformational definition of the meaning of function patterns (Definition 3) does
not lead to a constructive implementation since it might generate an infinite set of pro-
gram rules. Any execution of a program, though, would make use of only a finite subset
of these rules. In this section, we show a specialization of this transformation that, un-
der suitable assumptions discussed later, enumerates the results of all the program rules
that would be used in a specific execution of a program. These rules can be determined
only at run time. This approach is easily integrated into existing implementations of
functional logic languages, e.g., the Curry programming environment PAKCS [20]. We
present some benchmarks of our implementation of this approach.

To integrate function patterns into existing implementations of functional logic lan-
guages, we eliminate the function patterns from the left-hand sides and move their
functionality into the conditional part by means of a new function pattern unification
operator “=:<=”. The following transformation formalizes this process:

Definition 4. Let P be a stratified functional logic program with function patterns. The
function pattern elimination function elim maps each rule into a rule without function
patterns as follows:



16 S. Antoy and M. Hanus

elim(f t1 . . . tn | c = r) =⎧⎪⎪⎨
⎪⎪⎩

elim(f t1 . . . ti−1 x ti+1 . . . tn | ti =:<=x & c = r) if t1, . . . , ti−1 ∈ T (C,X ),
ti contains functions,
x fresh variable;

f t1 . . . tn | c = r otherwise �

For instance, elim maps rule (last2) to

last ys | xs++[x] =:<= ys = x where xs,x free (last3)

i.e., the pattern variables xs and x become logic variables in the transformed program.
Their specific status will be used in the implementation of “=:<=”.

It remains to implement the operator “=:<=”. Its semantics is determined by Defi-
nition 3, i.e., the left argument must be evaluated to a constructor term that is finally
matched against the right argument. This must be done with some care since the com-
putation space of the left argument may be infinite. For instance, this situation occurs
with the rule (last3). Consider again the computation of last [failed,2]. There are
infinitely many evaluations of xs++[x] to a constructor term. However, among these
evaluations every list with more or less than two elements cannot match [failed,2].

To handle this situation, the evaluation of the function pattern by “=:<=” is demand-
driven. This means that the function pattern is evaluated to a head normal form that
is compared with the structure of the right argument and is further evaluated only if
necessary. The details of function pattern unification follow.

To evaluate e1 =:<= e2:
1. Evaluate e1 to a head normal form h1

2. If h1 is a variable: bind it to e2

3. If h1 = c t1 . . . tn (where c is a constructor):
(a) Evaluate e2 to a head normal form h2
(b) If h2 is a variable: instantiate h2 to c x1 . . . xn (x1, . . . , xn are fresh

variables) and evaluate t1 =:<=x1 & . . . & tn =:<=xn

(c) If h2 = c s1 . . . sn: evaluate t1 =:<= s1 & . . . & tn =:<= sn

(d) Otherwise: fail

Obviously, this implements the evaluation of the left argument of “=:<=” to a con-
structor term that is matched against the right argument. Since the evaluation of the
left argument is interleaved with the matching, the search space of the evaluation
of xs++[x] =:<= [failed,2] using the rule (last3) is finite (due to the failure in
case 3d).

So far, we have only described the evaluation and binding of function patterns.
However, the semantics of Definition 3 requires also the linearization of the evaluated
function pattern combined with the addition of a strict equality constraint. One could
consider integrating the linearization with the evaluation of “=:<=” in step 3: if the left
argument is evaluated to the constructor-rooted term c t1 . . . tn, we could replace mul-
tiple occurrences of a variable by new variables and generate strict equality constraints
that are solved after the variables have been bound. Unfortunately, this method would be
incorrect according to the semantics of Definition 3, since some repeated occurrences



Declarative Programming with Function Patterns 17

of a variable could be erased before the end of the evaluation. For instance, consider the
following program:

k0 x = 0
pair x y = (x,y)
f (pair (k0 x) x) = 0

The meaning of f is equivalent to

f (0,x) = 0

by Definition 3. Consequently, f (0,failed) should evaluate to 0. In the evaluation of
pair (k0 x) x =:<= (0,failed), the left argument is reduced to the constructor-
rooted term (k0 x,x) where the variable x occurs twice. If we replace the first oc-
currence by y and generate the strict equality y=:=x, eventually we have to solve the
strict equality y=:=failed which causes the failure of the complete evaluation. Thus,
the generation of strict equalities for the linearization of function patterns is a dynamic
property. We have to keep track of the variables in function patterns that occur in the
evaluated term. We can do this by marking the pattern variables that appear in the evalu-
ated function pattern (i.e., in step 2). In this case the generated strict equality constraints
are only executed when both involved variables have been marked during the evaluation
of “=:<=”. Thus, we obtain an incremental implementation of matching with function
patterns conforming to the semantics specified by Definition 3.

Since the checking for multiple variable occurrences and the demand-driven gener-
ation of strict equality constraints for the involved variables might consume a consider-
able amount of time during function pattern unification, it is reasonable to optimize this
part. Therefore, we have also implemented a second function pattern unification oper-
ator “=:<<=”, which behaves like “=:<=” but does not check for multiple occurrences
of variables in evaluated function patterns. It is safe to replace “=:<=” by the more ef-
ficient operation “=:<<=” if all the evaluations of the function pattern are linear. For
instance, if a function pattern is linear and all the involved operations (i.e., also the ones
that might be indirectly called) have rules with right-linear sides, then one can safely
replace “=:<=” by “=:<<=”. This is the case for our definition of last with rule (last2).

We formalize the correctness of our implementation as follows. For the sake of sim-
plicity, we consider only unary functions, which typically are the only functions defined
by a function pattern. Let R be a TRS, m = f p → r a rule defined by a function pattern
and m′ = f x | p =<:=x → r the transformed rule, where x is a fresh variable. For all
terms t and u, f t→ u in R∪{m} iff f t→ u in R∪{m′}. The proof is simple except
for the following claim: In R, for all terms p and t, p =<:= t iff there exists a constructor
term l and a substitution σ such that p

∗
� l and σ(l) = σ(t). A rigorous proof of this

result hinges on a formalization of our pattern unification algorithm that goes beyond
the scope of this paper. In particular, the implementation requires a complete strategy
to ensure that any constructor term l such that p

∗
� l is computed.

We have implemented function patterns in the Curry programming environment
PAKCS [20]. This environment includes a compiler from Curry into Prolog [7], which
we used for our benchmarks. The implementation is based on the ideas sketched above.
Rules with function patterns are transformed into standard rules by putting the calls to
“=:<=” in the condition part. Although function patterns aim at expressiveness rather



18 S. Antoy and M. Hanus

than efficiency, we also show a few benchmarks where execution differences between
function patterns and traditional strict equality are substantial. The benchmarks refer
to the examples in this paper and are executed with strict equality (“=:=”), general
function patterns (“=:<=”), and linear function patterns (“=:<<=”). The following table
shows the execution results on a Pentium-M (1.6GHz) (all the times, in milliseconds,
are the average of ten executions):2

Expression: “=:=” “=:<=” “=:<<=”
last (take 10000 (repeat failed) ++ [1]) no solution 380 250
last (map (inc 0) [1..2000]) 20900 90 60
lengthUpToRepeat ([1..50]++[1]++[51..]) ∞ 200 200
simplify* 1200 1080 690
varsInExp 2240 1040 100

As one can see, the specialization of matching linear function patterns with “=:<<=”
can improve the efficiency considerably. Further improvements can be obtained by spe-
cializing the function patterns at compile time. For this purpose, we define an auxiliary
operation

evalFP fp x e | fp =:<= x = e

Now, consider again the definition of last. Using evalFP, we can transform rule
(last3) into (here, we omit the declaration of logic variables by where-clauses):

last zs = evalFP (xs++[x]) zs x (last4)

According to Definition 3, the argument (xs++[x]) must be evaluated by narrow-
ing before it is matched against zs. Since there are two possible narrowing steps for
(xs++[x]), we can replace the latter rule by:

last zs = last1 zs ? last2 zs
last1 zs = evalFP [x] zs x =⇒ last1 [x] = x
last2 zs = evalFP (y:(ys++[x])) zs x

=⇒ last2 (y:zs) = evalFP (ys++[x]) zs x

Since “evalFP (ys++[x]) zs x” is a variant of the right-hand side of rule (last4),
with a folding step, we replace it by last zs and obtain the final definition

last zs = last1 zs ? last2 zs
last1 [x] = x
last2 (y:zs) = last zs

This is a functional logic program without function patterns. If we execute our previous
benchmarks with this transformed program, we obtain the following results:

Expression: Transformed last
last (take 10000 (repeat failed) ++ [1]) 120
last (map (inc 0) [1..2000]) 30

2 The operation inc x n increments n times x by 1. All the other operations are defined either in
the standard prelude or in this paper. simplify* is the repeated application of the operation
simplify to a large term with many opportunities for simplification, and varsInExp extracts
all variables from a large term based on the operation varInExp.



Declarative Programming with Function Patterns 19

The speedup by a factor of 2 shows the advantages of this transformation. The spe-
cialization of a program rule with function patterns is similar to the partial evaluation
of functional logic programs [2]. As such, it is difficult to predict whether a rule will
yield a finite set of specialized rules and/or these rules will execute more efficiently
then the transformation. The setting of function patterns differs from partial evaluation
so that existing results and techniques cannot be directly applied. This demands for the
development of new techniques — an interesting topic for future work.

6 Related Work

Although the idea to allow arbitrary user-defined functions in patterns is new in the
context of functional logic languages, there exist many approaches to improve pattern
matching in declarative languages. Here we discuss the ones which have a closer rela-
tion to our work.

In functional logic languages, the considered kinds of patterns are usually construc-
tor terms. Exceptions are languages like SLOG [12] or ALF [15], which allow func-
tions in patterns that are useful to simplify terms before narrowing them. However,
these languages are based on strict evaluation strategies and require the termination of
the underlying rewrite system. Most other work in functional logic programming re-
lated to pattern matching considers only constructor patterns and concentrates mainly
on sophisticated matching strategies in order to reduce the search space of narrowing
computations (see [5, 16] for surveys).

Also in purely logic languages, patterns are constructor terms, and pattern matching
is generalized to unification. An exception is constraint logic programming [23], where
evaluable functions over constraint domains are allowed in patterns. However, they do
not play any role in the pattern matching process since they are usually compiled into
the right-hand side and passed to a separate constraint solver. Thus, most of the related
work has been done for purely functional languages, as we will discuss next.

Context patterns [26], proposed for the functional language Haskell, are most closely
related to our approach. The motivation for context patterns is somehow similar to the
introduction of function patterns, since context patterns support the definition of func-
tions based on the matching of subterms at an arbitrary depth. For instance, our last
example can be defined with context patterns as

last (c [x]) = x

Here, c denotes a context, i.e., a term with a hole that is filled with the argument [x].
Similarly to function patterns, context patterns are useful to define queries and trans-
formations over complex structures with a relatively small effort. However, due to the
underlying functional base language, context patterns are more restricted. The holes in
a context pattern are matched in a top-down left-to-right traversal against the actual ar-
gument and only the first match is taken. The author argues that this behavior, although
incomplete, fits well into the framework of functional programming. Actually, he writes
that a “non-deterministic approach would fit better in a integrated functional-logic lan-
guage like Curry.” It is interesting to note that the functional logic setting allows also to
omit some other restrictions of context patterns, like the strict order of the traversal.



20 S. Antoy and M. Hanus

First-class patterns [28] are an approach to treat patterns as first-class objects (by
considering patterns as functions of type “a -> Maybe b”) in order to build abstractions
for patterns and support user-defined strategies for pattern matching. This covers one
aspect of function patterns in a purely functional setting, but the definition of opera-
tions with first-class patterns is rather clumsy even after introducing a specific language
extension to support syntactic sugar for first-class patterns.

Transformational patterns [11] are another extension that supports the inclusion of
user-defined functions in patterns. These functions are applied to the actual arguments
before pattern matching in order to support a different view of the actual data (whose
structure might be hidden in an abstract data type). This is orthogonal to our approach,
in which functions are formal parameters that are evaluated and matched against the
actual parameters.

Other related works include approaches to simplify writing code for term traversals.
For instance, [24] shows a technique to support generic term traversals by defining small
code pieces for each data type (comparable to the operation replace of Example 2)
from which general functions to transform and query data structures can be derived.
Although this technique leads to generic and efficient programs for manipulating trees,
it does not have the generality of function patterns that can be also used to specify
complex conditions on data structures (compare definition of last and Example 1).

7 Conclusions

We have proposed extending functional logic languages with function patterns. We have
defined their semantics by transformation into traditional programs and shown that their
implementation can be obtained by a specific unification procedure. Function patterns
are advantageous because they evaluate conditions on actual arguments more lazily and
thus avoid some known problems of strict equality. Moreover, they allow the high-level
programming of queries and transformations of complex structures and support new
abstractions of patterns.

This extension is specific to integrated functional logic languages since purely logic
languages do not support evaluable functions and purely functional languages do not
support nondeterminism and function inversion. The versatility and ease of implemen-
tation of function patterns show that an integrated functional logic language is an ex-
cellent environment for building high-level abstractions.

In future work, we plan to develop techniques to partially evaluate programs with
function patterns at compile time to improve their efficiency. It might be interesting
to develop specific calculi to support reasoning directly about programs with function
pattens instead of using the transformational approach defined in this paper.

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational Semantics for Declarative
Multi-Paradigm Languages. Journal of Symbolic Computation, Vol. 40, No. 1, pp. 795–829,
2005.



Declarative Programming with Function Patterns 21

2. M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic Programs.
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 4, pp. 768–844,
1998.

3. S. Antoy. Optimal Non-Deterministic Functional Logic Computations. In Proc. International
Conference on Algebraic and Logic Programming (ALP’97), pp. 16–30. Springer LNCS
1298, 1997.

4. S. Antoy. Constructor-based Conditional Narrowing. In Proc. of the 3rd International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP
2001), pp. 199–206. ACM Press, 2001.

5. S. Antoy. Evaluation Strategies for Functional Logic Programming. Journal of Symbolic
Computation, Vol. 40, No. 1, pp. 875–903, 2005.

6. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of the ACM,
Vol. 47, No. 4, pp. 776–822, 2000.

7. S. Antoy and M. Hanus. Compiling Multi-Paradigm Declarative Programs into Pro-
log. In Proc. International Workshop on Frontiers of Combining Systems (FroCoS’2000),
pp. 171–185. Springer LNCS 1794, 2000.

8. S. Antoy and M. Hanus. Functional Logic Design Patterns. In Proc. of the 6th International
Symposium on Functional and Logic Programming (FLOPS 2002), pp. 67–87. Springer
LNCS 2441, 2002.

9. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
10. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook

of Theoretical Computer Science, Vol. B, pp. 243–320. Elsevier, 1990.
11. M. Erwig and S. Peyton Jones. Pattern Guards and Transformational Patterns. Electronic

Notes in Theoretical Computer Science, Vol. 41, No. 1, 2000.
12. L. Fribourg. SLOG: A Logic Programming Language Interpreter Based on Clausal Super-

position and Rewriting. In Proc. IEEE Internat. Symposium on Logic Programming, pp.
172–184, Boston, 1985.

13. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logic plus Func-
tional Language. Journal of Computer and System Sciences, Vol. 42, No. 2, pp. 139–185,
1991.

14. J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and M. Rodrı́guez-
Artalejo. An approach to declarative programming based on a rewriting logic. Journal
of Logic Programming, Vol. 40, pp. 47–87, 1999.

15. M. Hanus. Compiling Logic Programs with Equality. In Proc. of the 2nd Int. Workshop
on Programming Language Implementation and Logic Programming, pp. 387–401. Springer
LNCS 456, 1990.

16. M. Hanus. The Integration of Functions into Logic Programming: From Theory to Practice.
Journal of Logic Programming, Vol. 19&20, pp. 583–628, 1994.

17. M. Hanus. A Unified Computation Model for Functional and Logic Programming. In Proc.
of the 24th ACM Symposium on Principles of Programming Languages (Paris), pp. 80–93,
1997.

18. M. Hanus. A Functional Logic Programming Approach to Graphical User Interfaces. In
International Workshop on Practical Aspects of Declarative Languages (PADL’00), pp.
47–62. Springer LNCS 1753, 2000.

19. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third Inter-
national Symposium on Practical Aspects of Declarative Languages (PADL’01), pp. 76–92.
Springer LNCS 1990, 2001.

20. M. Hanus, S. Antoy, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre, and
F. Steiner. PAKCS: The Portland Aachen Kiel Curry System. Available at http://www.
informatik.uni-kiel.de/~pakcs/ , 2004.



22 S. Antoy and M. Hanus

21. M. Hanus and F. Steiner. Controlling Search in Declarative Programs. In Principles
of Declarative Programming (Proc. Joint International Symposium PLILP/ALP’98), pp.
374–390. Springer LNCS 1490, 1998.

22. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8). Available at
http://www.informatik.uni-kiel.de/~curry, 2003.

23. J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proc. of the 14th ACM Sympo-
sium on Principles of Programming Languages, pp. 111–119, Munich, 1987.

24. R. Lämmel and S.L. Peyton Jones. Scrap your boilerplate: a practical design pattern for
generic programming. In Proceedings of the 2003 ACM SIGPLAN International Workshop
on Types in Languages Design and Implementation (TLDI’03), pp. 26–37. ACM Press, 2003.

25. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative System.
In Proc. of RTA’99, pp. 244–247. Springer LNCS 1631, 1999.

26. M. Mohnen. Context Patterns in Haskell. In Implementation of Functional Languages, pp.
41–57. Springer LNCS 1268, 1997.

27. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report. Cam-
bridge University Press, 2003.

28. M. Tullsen. First class patterns. In 2nd International Workshop on Practical Aspects of
Declarative Languages (PADL’00), pp. 1–15. Springer LNCS 1753, 2000.



Transformational Verification of
Parameterized Protocols Using Array Formulas

Alberto Pettorossi1, Maurizio Proietti2, and Valerio Senni1

1 DISP, University of Roma Tor Vergata, Via del Politecnico 1, I-00133 Roma, Italy
pettorossi@info.uniroma2.it, senni@disp.uniroma2.it

2 IASI-CNR, Viale Manzoni 30, I-00185 Roma, Italy
proietti@iasi.rm.cnr.it

Abstract. We propose a method for the specification and the auto-
mated verification of temporal properties of parameterized protocols.
Our method is based on logic programming and program transformation.
We specify the properties of parameterized protocols by using an exten-
sion of stratified logic programs. This extension allows premises of clauses
to contain first order formulas over arrays of parameterized length. A
property of a given protocol is proved by applying suitable unfold/fold
transformations to the specification of that protocol. We demonstrate our
method by proving that the parameterized Peterson’s protocol among N
processes, for any N ≥2, ensures the mutual exclusion property.

1 Introduction

Protocols are rules that govern the interactions among concurrent processes.
In order to guarantee that these interactions enjoy some desirable properties,
many sophisticated protocols have been designed and proposed in the literature.
These protocols are, in general, difficult to verify because of their complexity
and ingenuity. This difficulty has motivated the development of methods for the
formal specification and the automated verification of properties of protocols.
One of the most successful methods is model checking [5]. It can be applied to
any protocol that can be formalized as a finite state system, that is, a finite set
of transitions over a finite set of states.

Usually, the number of interacting concurrent processes is not known in ad-
vance. Thus, people have designed protocols that can work properly for any num-
ber of interacting processes. These protocols are said to be parameterized with
respect to the number of processes. Several extensions of the model checking tech-
nique based upon abstraction and induction have been proposed in the literature
for the verification of parameterized protocols (see, for instance, [3,18,27,29]).
However, since the general problem of verifying temporal properties of parame-
terized protocols is undecidable [2], these extensions cannot be fully mechanical.

In this paper we propose an alternative verification method based on program
transformation [4]. Our main objective is to establish a correspondence between
protocol verification and program transformation, so that the large number of
semi-automatic techniques developed in the field of program transformation can
be applied to the verification of properties of parameterized protocols.

P.M. Hill (Ed.): LOPSTR 2005, LNCS 3901, pp. 23–43, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



24 A. Pettorossi, M. Proietti, and V. Senni

Since arrays are often used in the design of parameterized protocols, we will
consider a specification language that allows us to write array formulas, that
is, first order formulas over arrays. We will specify a parameterized protocol
and a property of interest by means of a logic program whose clause bodies may
contain array formulas. Our verification method works by transforming this logic
program, in which we assume that the head of the clause specifying the property
has predicate prop, into a new logic program where the clause prop ← occurs.
Our verification method is an extension of many other techniques based on logic
programming which have been proposed in the literature [7,9,11,15,19,22,23].

We will demonstrate our method by considering the parameterized Peterson’s
protocol [20]. This protocol ensures mutually exclusive use of a given resource
which is shared among N processes. The number N is the parameter of the pa-
rameterized protocol. In order to formally show that Peterson’s protocol ensures
mutual exclusion, we cannot use the model checking technique directly. Indeed,
since the parameter N is unbounded, the parameterized Peterson’s protocol, as
it stands, cannot be viewed as a finite state system. Now, one can reduce it to a
finite state system, thereby enabling the application of model checking, by using
the above mentioned techniques based on abstraction [3]. However, it is not easy
to find a powerful abstraction function which works for the many protocols and
concurrent systems one encounters in practice.

In contrast, our verification method based on program transformation does
not rely on an abstraction function which is applied once at the beginning of the
verification process, but it relies, instead, on a generalization strategy which is
applied on demand during the construction of the proof, possibly many times,
depending on the structure of the portion of proof constructed so far. This
technique provides a more flexible approach to the problem of proving properties
of protocols with an infinite state space.

The paper is structured as follows. In Section 2 we recall the parameter-
ized Peterson’s protocol for mutual exclusion which will be used throughout the
paper as a working example. In Section 3 we present our specification method
which makes use of an extension of stratified logic programs where bodies of
clauses may contain first order formulas over arrays of parameterized length.
We consider properties of parameterized protocols that can be expressed by us-
ing formulas of the branching time temporal logic CTL [5] and we show how
these properties can be encoded by stratified logic programs with array formu-
las. Then, in Section 4, we show how CTL properties can be proved by applying
unfold/fold transformation rules to a given specification. In Section 5 we discuss
some issues regarding the automation of our transformation method. Finally, in
Section 6 we briefly discuss the related work in the area of the verification of
parameterized protocols.

2 Peterson’s Mutual Exclusion Protocol

In this section we provide a detailed description of the parameterized Peterson’s
protocol [20]. The goal of this protocol is to ensure the mutually exclusive access



Transformational Verification of Parameterized Protocols 25

to a resource that is shared among N (≥ 2) processes. Let assume that for any
i, with 1≤ i≤N , process i consists of an infinite loop whose body is made out of
two portions of code: (i) a portion called critical section, denoted cs, in which the
process uses the resource, and (ii) a portion called non-critical section, denoted
ncs, in which the process does not use the resource. We also assume that every
process is initially in its non-critical section.

We want to establish the following Mutual Exclusion property of the compu-
tation of the given system of N processes: for all i and j in {1, . . . , N}, while
process i executes a statement of its critical section, process j, with j �= i, does
not execute any statement of its critical section.

The parameterized Peterson’s protocol consists in adding two portions of code
to every process: (i) a first portion to be executed before entering the critical
section, and (ii) a second portion to be executed after exiting the critical section
(see in Figure 1 the code relative to process i).

Peterson’s protocol makes use of two arrays Q[1, . . . , N ] and S[1, . . . , N ] of
natural numbers, which are shared among the N processes. The N elements of
the array Q may get values from 0 to N−1 and are initially set to 0. The N
elements of the array S may get values from 1 to N and their initial values are
not significant (in [20] it is assumed that they are all 1’s). Notice that in [20]
the array S is assumed to have N−1 elements, not N as we do. Indeed, the last
element S[N ] is never used by Peterson’s protocol. Its introduction, however,
allows us to write formulas which are much simpler.

In Peterson’s protocol we also have the array J [1, . . . , N ] whose i-th element,
for i = 1, . . . , N , is a local variable of process i and may get values from 1 to N .
Notice that the array J is not shared and indeed, for i = 1, . . . , N , process i reads
and/or writes J [i] only.

In Figure 2 process i is represented by a finite state diagram. In that diagram
a transition from state a to state b is denoted by an arrow from a to b labelled
by a test t and a statement s. We have omitted from the label of a transition
the test t when it is true. Likewise, we have omitted the statement s when it is
skip. A transition is said to be enabled iff its test t evaluates to true. An enabled
transition takes place by executing its statement s.

For i = 1, . . . , N , process i is deterministic in the sense that in any of its states
at most one transition is enabled. However, in the given system of N processes,
it may be the case that more than one transition is enabled (obviously, no two
enabled transitions belong to the same process). In that case we assume that
exactly one of the enabled transitions takes place. Note that we do not make
any fairness assumption so that, for instance, if the same configuration of enabled
transitions occurs again in the future, nothing can be said about the transition
which will actually take place in that repeated configuration.

The N processes execute their code in a concurrent way according to the
following four atomicity assumptions. Here and in what follows, we denote by ϕ
the formula ∀k (k �= i → Q[k]<J [i]) ∨ (S[J [i]] �= i).

(1) The assignments ‘Q[i] := 0’ and ‘J [i] := 1’ are atomic,
(2) the tests ‘¬J [i]<N ’ and ‘¬ϕ’ are atomic,



26 A. Pettorossi, M. Proietti, and V. Senni

while true do
ncs : non-critical section of process i ;

J [i] := 1;
w : while J [i]<N do

Q[i] := J [i]; S[J [i]] := i;
λ: if ∀k (k �= i → Q[k] < J [i]) ∨ (S[J [i]] �= i) then J [i] := J [i]+1 else goto λ

od;
cs : critical section of process i ;

Q[i] := 0
od

Fig. 1. Process i of a system of N processes using Peterson’s protocol

�

�
� �

�¬ ϕ ?

��
�	

λ

��
�	

ncs�

��
�	

cs

��
�	

w

�
�

���

J [i] :=1

�
�

���
¬ J [i]<N ?

�J [i]<N ?

Q[i] := J [i] ;

S[J [i]] := i

�
ϕ ?J [i] :=J [i]+1

	

Q[i] :=0

l

Fig. 2. Finite state diagram corresponding to process i of a system of N processes
using Peterson’s protocol. ncs is the initial state. The formula ϕ stands for ∀k (k �= i →
Q[k] < J [i]) ∨ (S[J [i]] �= i).

(3) the sequence of the test ‘J [i]<N ’ followed by the two assignments
‘Q[i] := J [i]; S[J [i]] := i’ is atomic, and

(4) the sequence of the test ‘ϕ’ followed by the assignment ‘J [i] := J [i]+1’ is
atomic.

We have made these atomicity assumptions (which correspond to the labels of the
transitions of the diagram of Figure 2) for keeping the presentation of our proof of
the mutual exclusion property as simple as possible. However, this property has
also been proved by using our method which we will present in Section 4, under
weaker assumptions, in which one only assumes that every single assignment and
test is atomic [26]. (In particular, in [26] it is assumed that each test k �= i and
‘Q[k] < J [i]’ in the formula ϕ, and not the entire formula ϕ, is atomic. Likewise,
it is assumed that in the transition from state w to state λ, each assignment
‘Q[i] := J [i]’ and ‘S[J [i]] := i’, and not the sequence ‘Q[i] := J [i];S[J [i]] := i’ of
assignments, is atomic.)

We assume that the number N of processes does not change over time, in the
sense that while the computation progresses, neither a new process is constructed
nor an existing process is destroyed.



Transformational Verification of Parameterized Protocols 27

In the original paper [20], the proof of the mutual exclusion property of the
parameterized Peterson’s protocol is left to the reader. The author of [20] simply
says that it can be derived from the proof provided for the case of two processes
(and, actually, that proof is an informal one) by observing that, for each value of
J [i] = 1, . . . , N−1, at least one process is discarded from the set of those which
may enter their critical section. Thus, at the end of the for-loop, at most one
process may enter its critical section.

In Peterson’s protocol, the value of the variable J [i] of process i indicates, as
we will now explain, the ‘level’ that process i has reached since it first requested
to enter its critical section (and this request was done by starting the execution
of the while-loop with label w, see Figure 1). When process i completes its non-
critical section and requests to enter its critical section, it goes to state w where
its level J [i] is 1. When process i completes one execution of the body of the
while-loop with label w (that is, it goes from state w to state λ and back to state
w), it increases its level by one unit. For each level J [i]=1, . . . , N−1, process i
tests whether or not property ϕ holds, and for J [i]= 1, . . . , N−2, if ϕ holds at
level J [i], then process i goes to the next level up, that is, J [i] is increased by one
unit. If ϕ holds at the final level N−1, then process i enters its critical section.

3 Specification of Parameterized Protocols Using Array
Formulas

In this section we present our method for the specification of parameterized
protocols and their temporal properties. The main novelty of our method with
respect to other methods based on logic programming is that in the specification
of protocols we use the first order theory of arrays introduced below.

Similarly to the model checking approach, we represent a protocol as a set
of transitions between states. Notice, however, that in the case of parameterized
protocols the number of states may be infinite. For the formal specification of the
transition relation we consider a typed first order language [16] with the following
two types: (i) N, denoting natural numbers, and (ii) A, denoting arrays of natural
numbers. A state is represented by a term of the form s(X1, . . . , Xn), where
X1, . . . , Xn are variables of type N or A. The transition relation is specified by
a set of statements of the form:

t(a, a′) ← τ

where t is a fixed binary predicate symbol, a and a′ are terms representing states,
and τ is an array formula defined as we now describe.

An array formula is a typed first order formula constructed by using a lan-
guage consisting of: (i) variables of type N, (ii) variables of type A (called array
variables), (iii) the constant 0 of type N and the successor function succ of type
N → N, and (iv) the following predicates, whose informal meaning is given be-
tween parentheses (the names rd and wr stand for read and write, respectively):
ln of type A×N (ln(A, l) means ‘the array A has length l’)
rd of type A×N×N (rd(A, i, n) means ‘in the array A the i-th element is n’)



28 A. Pettorossi, M. Proietti, and V. Senni

wr of type A×N×N×A (wr(A, i, n,B) means ‘the array B is equal to the
array A except that the i-th element of B is n’)

=N, <, ≤, all of type N×N (equality and inequalities between natural numbers)
=A of type A×A (equality between arrays)

Given a term n of type N, the term succ(n) will also be written as n + 1. For
reasons of simplicity, we will write =, instead of =N and =A, when the type of
the equality is clear from the context.

Array formulas are constructed as usual in typed first order logic by using
the connectives ∧, ∨, ¬, →, and ↔, and the quantifiers ∀ and ∃. However, for
every statement of the form t(a, a′) ← τ which specifies a transition relation, we
assume that every array variable occurring in τ is not quantified within τ itself.

The semantics of a statement of the form t(a, a′) ← τ is defined in a transfor-
mational way by transforming this statement into a stratified set of clauses. This
set of clauses is obtained by applying the variant of the Lloyd-Topor transforma-
tion for typed first order formulas described in [10], called the typed Lloyd-Topor
transformation. This transformation works like the Lloyd-Topor transformation
for untyped first order formulas [16], except that it adds type atoms to the bodies
of the transformed clauses so that each variable ranges over the domain specified
by the corresponding type atom. In our case, the transformation adds the type
atoms nat(N) and array(A) for each occurrence of a variable N of type N and a
variable A of type A, respectively. The definition of the predicates nat and array
is provided by the following definite clauses:

nat(0) ← array([ ])←
nat(N+1) ← nat(N) array([A|As]) ← nat(A) ∧ array(As)

Note that in these clauses arrays are represented as lists. These four clauses
are included in a set, called Arrays, of definite clauses that also provide the
definitions of the predicates ln, rd, wr, =N, <, ≤, and =A of our first order
language of arrays. In particular, Arrays contains the clauses:

ln([ ], 0) ←
ln([A|As], L) ← L=N+1 ∧ ln(As,N)
rd([A|As], 1, D) ← A=D
rd([A|As], L,D) ← L=K+1 ∧ rd(As,K,D)
wr([A|As], 1, D, [B|Bs]) ← B=D ∧ As=Bs
wr([A|As], L,D, [B|Bs]) ← A=B ∧ L=K+1 ∧ wr(As,K,D,Bs)

We omit to list here the usual clauses defining the predicates =N, <, ≤, and =A.
As an example of application of the typed Lloyd-Topor transformation, let us
consider the following statement:

t(s(A), s(B)) ← ∃n ∀i wr(A, i, n,B)

where: (i) A and B are array variables, and (ii) s(A) and s(B) are terms repre-
senting states. By applying the typed Lloyd-Topor transformation to this state-
ment, we get the following two clauses:

t(s(A), s(B)) ← array(A) ∧ array(B) ∧ nat(N) ∧ ¬newp(A,N,B)
newp(A,N,B) ← array(A) ∧ nat(I) ∧ nat(N) ∧ array(B) ∧ ¬wr(A, I,N,B)



Transformational Verification of Parameterized Protocols 29

Given a statement of the form H←τ , where H is an atom and τ is an array for-
mula, we denote by LTt(H←τ) the set of clauses which are derived by applying
the typed Lloyd-Topor transformation to H← τ . For reasons of conciseness, in
what follows we will feel free to write statements with array formulas, instead
of the corresponding set of clauses, and by abuse of language, statements with
array formulas will also be called ‘clauses’.

Let us now specify the parameterized Peterson’s protocol for N processes by
using statements with array formulas. In this specification a state is represented
by a term of the form s(P, J,Q, S), where:

– P is an array of the form [p1, . . . , pN ] such that, for i = 1, . . . , N , pi is
a constant in the set {ncs, cs , w, λ} representing the state of process i (see
Figure 2). In order to comply with the syntax of array formulas, the constants
ncs, cs , w, and λ should be replaced by distinct natural numbers, but, for
reasons of readability, in the formulas below we will use the more expressive
identifiers ncs, cs , w, and λ.

– J is an array of the form [j1, . . . , jN ], where, for i = 1, . . . , N , ji belongs to
the set {1, . . . , N} and is a local value in the sense that it can be read and
written by process i only.

– Q and S are arrays of the form [q1, . . . , qN ] and [s1, . . . , sN ], respectively,
where, for i = 1, . . . , N , qi belongs to the set {0, . . . , N−1} and si belongs to
the set {1, . . . , N}. These two arrays Q and S are shared in the sense that
they can be read and written by any of the N processes.

The transition relation of the parameterized Peterson’s protocol is defined by the
seven statements T1, . . . , T7 which we now introduce. For r = 1, . . . , 7, statement
Tr is of the form:

t(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ← τr(s(P, J,Q, S), s(P ′, J ′, Q′, S′))

where τr(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) is an array formula defined as follows (see
also Figure 2).

1. For the transition from ncs to w :
τ1(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡def

∃i (rd(P, i, ncs) ∧ wr(P, i, w, P ′) ∧ wr(J, i, 1, J ′)) ∧
Q′=Q ∧ S′=S

2. For the transition from w to λ :
τ2(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡def

∃i, k, l (rd(P, i, w) ∧ wr(P, i, λ, P ′) ∧ rd(J, i, k) ∧
wr(Q, i, k,Q′) ∧ wr(S, k, i, S′) ∧ ln(P, l) ∧ k<l ) ∧

J ′=J

3. For the transition from λ to λ :
τ3(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡def

∃i, k,m, n (rd(P, i, λ) ∧ rd(J, i,m) ∧ ¬ (k= i) ∧ rd(Q, k, n) ∧
n≥m ∧ rd(S,m, i)) ∧

P ′=P ∧ J ′=J ∧ Q′=Q ∧ S′=S



30 A. Pettorossi, M. Proietti, and V. Senni

4. For the transition from λ to w when ∀k (k �= i→ Q[k] < J [i]) holds :
τ4(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡def

∃i, l,m (rd(P, i, λ) ∧ wr(P, i, w, P ′) ∧ rd(J, i,m) ∧ ln(P, l)∧
∀k, n((1≤k≤ l ∧ rd(Q, k, n) ∧ ¬ (k= i)) → n<m) ∧
wr(J, i,m+1, J ′)) ∧

Q′=Q ∧ S′=S

5. For the transition from λ to w when S[J [i]] �= i holds :
τ5(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡def

∃i,m (rd(P, i, λ) ∧ wr(P, i, w, P ′) ∧
rd(J, i,m) ∧ ¬ rd(S,m, i) ∧ wr(J, i,m+1, J ′)) ∧

Q′=Q ∧ S′=S

6. For the transition from w to cs :
τ6(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡def

∃i,m (rd(P, i, w) ∧ wr(P, i, cs , P ′) ∧
rd(J, i,m) ∧ ln(P, l) ∧ m≥ l)∧

J ′=J ∧ Q′=Q ∧ S′=S

7. For the transition from cs to ncs :
τ7(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ≡def

∃i (rd(P, i, cs) ∧ wr(P, i,ncs , P ′) ∧ wr(Q, i, 0, Q′)) ∧
J ′=J ∧ S′=S

We will express the properties of parameterized protocols by using the branching
time temporal logic CTL [5]. In particular, the mutual exclusion property of
Peterson’s protocol will be expressed by the following temporal formula:

initial → ¬EF unsafe
where initial and unsafe are atomic properties of states which we will specify
below. This temporal formula holds at a state a whenever the following is true:
if a is an initial state then there exists no unsafe state in the future of a.

The truth of a CTL formula is defined by the following locally stratified logic
program, called Holds, where the predicate holds(X,F ) means that a temporal
formula F holds at a state X:

holds(X,F ) ← atomic(X,F )
holds(X,¬F ) ← ¬ holds(X,F )
holds(X,F ∧G) ← holds(X,F ) ∧ holds(X,G)
holds(X, ef (F )) ← holds(X,F )
holds(X, ef (F )) ← t(X,X ′) ∧ holds(X ′, ef (F ))

Other connectives, such as ∨, → and ↔, defined as usual in terms of ∧ and ¬,
can be used in CTL formulas. The unary constructor ef encodes the temporal
operator EF . Other temporal operators, such as the operator AF which is needed
for expressing liveness properties, can be defined by using locally stratified logic
programs [9,15]. Here, for reasons of simplicity, we have restricted ourselves to
the operator EF which is the only operator needed for specifying the mutual
exclusion property (which is a safety property).



Transformational Verification of Parameterized Protocols 31

The atomic properties of the states are specified by a set of statements of the
form:

atomic(a, p) ← α

where a is a term representing a state, p is a constant representing an atomic
property, and α is an array formula stating that p holds at state a. We assume
that the array variables occurring in α are not quantified within α itself. In
particular, the initial and unsafe atomic properties are defined by the following
two statements A1 and A2.

A1: atomic(s(P, J,Q, S), initial) ←
∃l (∀k (1≤k≤ l → (rd(P, k,ncs) ∧ rd(Q, k, 0)))∧

ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))

A2: atomic(s(P, J,Q, S), unsafe) ← ∃i, j (rd(P, i, cs) ∧ rd(P, j, cs) ∧ ¬ (j = i))

The premise of A1, which will also be denoted by init_state(s(P, J,Q, S)), ex-
presses the fact that in an initial state every process is in its non-critical sec-
tion, Q is an array whose elements are all 0’s, and the arrays P , J , Q, and
S have the same length. The premise of A2, which will also be denoted by
unsafe_state(s(P, J,Q, S)), expresses the fact that in an unsafe state at least
two distinct processes are in their critical section.

Now we formally define when a CTL formula holds for a specification of a
parameterized protocol. Let us consider a protocol specification Spec consisting
of the following set of statements:

Spec : {T1, . . . , Tm, A1, . . . , An}
where: (i) T1, . . . , Tm are statements that specify a transition relation, and
(ii) A1, . . . , An are statements that specify atomic properties. We denote by
PSpec the following set of clauses:

PSpec : LTt(T1) ∪ . . . ∪ LTt(Tm) ∪ LTt(A1) ∪ . . . ∪ LTt(An) ∪Arrays ∪Holds

Given a specification Spec of a parameterized protocol and a CTL formula ϕ,
we say that

ϕ holds for Spec iff M(PSpec) |= ∀X holds(X,ϕ)

where M(PSpec) denotes the perfect model of PSpec . Note that the existence of
M(PSpec) is guaranteed by the fact that PSpec is locally stratified [1]. In the
next section we will prove the mutual exclusion property for the parameterized
Peterson’s protocol by proving that

M(PPeterson) |= ∀X holds(X, initial → ¬ ef (unsafe)) (ME)

where Peterson is the specification of the parameterized Peterson’s protocol
consisting of the set {T1, . . . , T7, A1, A2} of statements we have listed above.

Note that the above formula (ME) guarantees the mutual exclusion property
of the parameterized Peterson’s protocol for any number N (≥ 2) of processes.
Indeed, in (ME) the variable X ranges over terms of the form s(P, J,Q, S) and
the parameter N of Peterson’s protocol is the length of the arrays P, J,Q, and S.



32 A. Pettorossi, M. Proietti, and V. Senni

4 Transformational Verification of Parameterized
Protocols

In this section we describe our method for the verification of CTL properties of
parameterized protocols. This method follows the approach based on program
transformation which has been proposed in [21]. As an example of application
of our method, we prove that the mutual exclusion property holds for the pa-
rameterized Peterson’s protocol.

Suppose that, given a specification Spec of a parameterized protocol and a
CTL property ϕ, we want to prove that ϕ holds for Spec, that is, M(PSpec) |=
∀X holds(X,ϕ). We start off by introducing the statement:

prop ← ∀X holds(X,ϕ)
where prop is a new predicate symbol. By applying the Lloyd-Topor transfor-
mation (for untyped formulas) to this statement and by using the equivalence:

M(PSpec) |= ∀X,F (¬ holds(X,F ) ↔ holds(X,¬F ))
we get the following two clauses:
1. prop ← ¬new1
2. new1 ← holds(X,¬ϕ)
Our verification method consists in showing M(PSpec) |= ∀X holds(X,ϕ) by
applying unfold/fold transformation rules that preserve the perfect model [9,25]
and deriving from the program PSpec ∪ {1, 2} a new program T which contains
the clause prop ←.

The soundness of our method is a straightforward consequence of the fact
that both the Lloyd-Topor transformation and the unfold/fold transformation
rules preserve the perfect model, that is, the following holds:

M(PSpec) |= ∀X holds(X,ϕ) iff M(PSpec ∪ {1, 2}) |= prop iff M(T ) |= prop

Notice that in the case where T contains no clause for prop, we conclude that
M(PSpec ∪ {1, 2}) �|= prop and, thus, M(PSpec) |= ∃X holds(X,¬ϕ). Unfortu-
nately, our method is necessarily incomplete due to the undecidability of CTL
for parameterized protocols. Indeed, the unfold/fold transformation may not ter-
minate or it may terminate by deriving a program T that contains one or more
clauses of the form prop ← Body , where Body is not the empty conjunction.

The application of the unfold/fold transformation rules is guided by a trans-
formation strategy which extends the ones presented in [9,21] to the case of
logic programs with array formulas. Now we outline this strategy and then we
will see it in action in the verification of the mutual exclusion property of the
parameterized Peterson’s protocol.

Our transformation strategy is divided into two phases, called Phase A and
Phase B, respectively.

In Phase A we compute a specialized definition of holds(X,¬ϕ) as we now
describe. Starting from clause 2 above, we perform the following transformation
steps: (i) we unfold clause 2, thereby deriving a new set, say Cls, of clauses, (ii) we
manipulate the array formulas occurring in the clauses of Cls, by replacing these



Transformational Verification of Parameterized Protocols 33

formulas by equivalent ones and by removing each clause whose body contains an
unsatisfiable formula, (iii) we introduce definitions of new predicates and we fold
every instance of holds(X,F ). Starting from each definition of a new predicate,
we repeatedly perform the above three transformation steps (i), (ii), and (iii).
We stop when we are able to fold all instances of holds(X,F ) by using predicate
definitions already introduced at previous transformation steps.

In Phase B we derive a new program T where as many predicates as possible
are defined either by a single fact or by an empty set of clauses, in the hope that
prop is among such predicates. In order to derive program T we use the unfolding
rule and the clause removal rule. In particular, we remove all clauses that define
useless predicates [9]. Recall that: (i) the set U of all useless predicates of a
program P is defined as the largest set such that for every predicate p in U and
for every clause C that defines p in P , there exists a predicate q in U which
occurs positively in the body of C, and (ii) the removal of the clauses that define
useless predicates preserves the perfect model of the program at hand [9].

This two-phase transformation technique has been fruitfully used for proving
properties of infinite state systems in [9].

Let us now show how the mutual exclusion property of the parameterized Pe-
terson’s protocol can be verified by using our method based on program trans-
formation. The property ϕ to be verified is initial → ¬ ef (unsafe). Thus, we
start from the statement:

mutex ← ∀X holds(X, initial → ¬ ef (unsafe))
and by applying the Lloyd-Topor transformation, we get the following two
clauses:
1. mutex ← ¬new1
2. new1 ← holds(X, initial ∧ ef (unsafe))
Now we apply our transformation strategy starting from PPeterson∪{1, 2}, where
PPeterson is the program which encodes the specification of the parameterized
Peterson’s protocol as described in Section 3. Let us now show some of the
transformation steps performed during Phase A of this strategy. By unfolding
clause 2 we get:

3. new1 ← init_state(s(P, J,Q, S)) ∧ unsafe_state(s(P, J,Q, S))
4. new1 ← init_state(s(P, J,Q, S)) ∧ t(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ∧

holds(s(P ′, J ′, Q′, S′), ef (unsafe))

Clause 3 is removed because the array formula
init_state(s(P, J,Q, S)) ∧ unsafe_state(s(P, J,Q, S))

occurring in its body is unsatisfiable (indeed, every process is initially in its non-
critical section and, thus, the initial state is not unsafe). In the next section we
will discuss the issue of how to mechanize satisfiability tests.

We unfold clause 4 with respect to the atom with predicate t and we get seven
new clauses, one for each statement T1, . . . , T7 defining the transition relation
(see Section 3). The clauses derived from T2, . . . , T7 are removed because their
bodies contain unsatisfiable array formulas. Thus, after these unfolding steps
and removal steps, from clause 2 we get the following clause only:



34 A. Pettorossi, M. Proietti, and V. Senni

5. new1 ← init_state(s(P, J,Q, S)) ∧ τ1(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ∧
holds(s(P ′, J ′, Q′, S′), ef (unsafe))

where τ1(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) is the array formula defined in Section 3.
Now let us consider the formula c1(s(P ′, J ′, Q′, S′)) defined as follows:

c1(s(P ′, J ′, Q′, S′)) ≡def
∃P, J,Q, S (init_state(s(P, J,Q, S)) ∧ τ1(s(P, J,Q, S), s(P ′, J ′, Q′, S′)))

By eliminating from it the existentially quantified variables P , J , Q and S, we
obtain the following equivalence:

c1(s(P ′, J ′, Q′, S′)) ↔ (C)
∃l, i (∀k((1≤k≤ l ∧ ¬ (k= i)) → (rd(P ′, k, ncs) ∧ rd(Q′, k, 0))) ∧

rd(P ′, i, w) ∧ rd(J ′, i, 1) ∧ rd(Q′, i, 0)
ln(P ′, l) ∧ ln(J ′, l) ∧ ln(Q′, l) ∧ ln(S′, l))

Now, in order to fold clause 5 w.r.t. the atom holds(s(P ′, J ′, Q′, S′), ef (unsafe)),
a suitable condition has to be fulfilled (see the folding rule for constraint logic
programs described in [9]). Let us present this condition in the case of programs
with array formulas that we consider in this paper.

Suppose that we are given a clause of the form H ← α ∧ holds(X,ψ) ∧ G
and we want to fold it by using a (suitably renamed) clause of the form
newp(X) ← β ∧ holds(X,ψ). This folding step is allowed only if we have
that M(Arrays) |= ∀(α → β) holds, that is, α ∧ ¬β is unsatisfiable in
M(Arrays). If this condition is fulfilled, then by folding we obtain the new clause
H ← α ∧ newp(X) ∧ G.

Now, in order to fold clause 5, we introduce a new predicate definition of the
form:
6. new2(s(P, J,Q, S)) ← genc1(s(P, J,Q, S)) ∧ holds(s(P, J,Q, S), ef (unsafe))

The formula genc1(s(P, J,Q, S)) is a generalization of c1(s(P, J,Q, S)), in the
sense that the following holds:

M(Arrays) |= ∀P, J,Q, S (c1(s(P, J,Q, S)) → genc1(s(P, J,Q, S)))

This ensures that the condition for folding is fulfilled.
As usual in program transformation techniques, this generalization step from

c1 to genc1 requires ingenuity. We will not address here the problem of how to
mechanize this generalization step and the other generalization steps required
in the remaining part of our program derivation. However, some aspects of this
crucial generalization issue will be discussed in Section 5.

In our verification of the parameterized Peterson’s protocol we introduce the
following array formula genc1(s(P, J,Q, S)) which holds iff zero or more processes
are in state w and the remaining processes are in state ncs:

genc1(s(P, J,Q, S)) ≡def (G)
∃l (∀k (1≤k≤ l → ((rd(P, k,ncs) ∧ rd(Q, k, 0))∨

(rd(P, k, w) ∧ rd(J, k, 1) ∧ rd(Q, k, 0))))∧
ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))



Transformational Verification of Parameterized Protocols 35

This formula defining genc1(s(P, J,Q, S)) is indeed a generalization of the for-
mula c1(s(P, J,Q, S)), as the reader may check by looking at the above equiva-
lence (C). By folding clause 5 using the newly introduced clause 6 we get:

5.f new1 ← init_state(s(P, J,Q, S)) ∧ τ1(s(P, J,Q, S), s(P ′, J ′, Q′, S′)) ∧
new2(s(P ′, J ′, Q′, S′))

Now, starting from clause 6, we repeat the transformation steps (i), (ii), and (iii)
described above, until we are able to fold every instance of holds(X,F ) by using
a predicate definition introduced at a previous transformation step. By doing so
we terminate Phase A and we derive the following program R where:

– genc1 is defined as indicated in (G),
– genc2, . . . , genc8 are defined as indicated in the Appendix,
– τ1, . . . , τ7 are the array formulas that define the transition relation as indi-

cated in Section 3, and
– the arguments a and a′ stand for the states s(P, J,Q, S) and s(P ′, J ′, Q′, S′),

respectively.

1. mutex ← ¬new1 Program R

5.f new1 ← initial(a) ∧ τ1(a, a′) ∧ new2(a′)
7. new2(a) ← genc1(a) ∧ τ1(a, a′) ∧ new2(a′)
8. new2(a) ← genc1(a) ∧ τ2(a, a′) ∧ new3(a′)
9. new2(a) ← genc1(a) ∧ τ6(a, a′) ∧ new7(a′)
10. new3(a) ← genc2(a) ∧ τ1(a, a′) ∧ new3(a′)
11. new3(a) ← genc2(a) ∧ τ2(a, a′) ∧ new3(a′)
12. new3(a) ← genc2(a) ∧ τ3(a, a′) ∧ new3(a′)
13. new3(a) ← genc2(a) ∧ τ4(a, a′) ∧ new4(a′)
14. new3(a) ← genc2(a) ∧ τ5(a, a′) ∧ new5(a′)
15. new4(a) ← genc3(a) ∧ τ1(a, a′) ∧ new4(a′)
16. new4(a) ← genc3(a) ∧ τ2(a, a′) ∧ new4(a′)
17. new4(a) ← genc3(a) ∧ τ2(a, a′) ∧ new6(a′)
18. new4(a) ← genc3(a) ∧ τ4(a, a′) ∧ new4(a′)
19. new4(a) ← genc3(a) ∧ τ6(a, a′) ∧ new7(a′)
20. new5(a) ← genc4(a) ∧ τ1(a, a′) ∧ new5(a′)
21. new5(a) ← genc4(a) ∧ τ2(a, a′) ∧ new5(a′)
22. new5(a) ← genc4(a) ∧ τ3(a, a′) ∧ new5(a′)
23. new5(a) ← genc4(a) ∧ τ4(a, a′) ∧ new5(a′)
24. new5(a) ← genc4(a) ∧ τ5(a, a′) ∧ new5(a′)
25. new5(a) ← genc4(a) ∧ τ6(a, a′) ∧ new8(a′)
26. new6(a) ← genc5(a) ∧ τ1(a, a′) ∧ new6(a′)
27. new6(a) ← genc5(a) ∧ τ2(a, a′) ∧ new6(a′)
28. new6(a) ← genc5(a) ∧ τ3(a, a′) ∧ new6(a′)
29. new6(a) ← genc5(a) ∧ τ4(a, a′) ∧ new6(a′)
30. new6(a) ← genc5(a) ∧ τ5(a, a′) ∧ new6(a′)
31. new6(a) ← genc5(a) ∧ τ6(a, a′) ∧ new9(a′)



36 A. Pettorossi, M. Proietti, and V. Senni

32. new7(a) ← genc6(a) ∧ τ1(a, a′) ∧ new7(a′)
33. new7(a) ← genc6(a) ∧ τ2(a, a′) ∧ new9(a′)
34. new7(a) ← genc6(a) ∧ τ7(a, a′) ∧ new2(a′)
35. new8(a) ← genc7(a) ∧ τ3(a, a′) ∧ new8(a′)
36. new8(a) ← genc7(a) ∧ τ7(a, a′) ∧ new5(a′)
37. new9(a) ← genc8(a) ∧ τ1(a, a′) ∧ new9(a′)
38. new9(a) ← genc8(a) ∧ τ2(a, a′) ∧ new9(a′)
39. new9(a) ← genc8(a) ∧ τ3(a, a′) ∧ new9(a′)
40. new9(a) ← genc8(a) ∧ τ5(a, a′) ∧ new9(a′)
41. new9(a) ← genc8(a) ∧ τ7(a, a′) ∧ new6(a′)

Now we proceed to Phase B of our strategy. Since in program R the predicates
new1 through new9 are useless, we remove clause 5.f, and clauses 7 through 41,
and by doing so, we derive a program consisting of clause 1 only. By unfolding
clause 1 we get the final program T , which consists of the clause mutex ← only.
Thus, M(T ) |= mutex and we have proved that:

M(PPeterson) |= ∀X holds(X, initial → ¬ ef (unsafe))

As a consequence, we have that for any initial state and for any number N(≥ 2) of
processes, the mutual exclusion property holds for the parameterized Peterson’s
protocol.

5 Mechanization of the Verification Method

In order to achieve a full mechanization of our verification method, two main
issues have to be addressed: (i) how to test the satisfiability of array formulas,
and (ii) how to perform suitable generalization steps.

Satisfiability tests for array formulas are required at the following two points
of Phase A of the transformation strategy described in Section 4: (1) at Step (ii),
when we remove each clause whose body contains an unsatisfiable array formula,
and (2) at Step (iii), when we fold each clause whose body contains a holds literal.

In order to clarify Point (2), we recall that, before applying the folding rule [9],
we need to test that in M(Arrays) the array formula occurring in the body of
the clause to be folded implies the array formula occurring in the body of the
clause that we use for folding. For instance, in Section 4 before folding clause 5
using clause 6, we need to prove that:

M(Arrays) |= ∀P, J,Q, S (c1(s(P, J,Q, S)) → genc1(s(P, J,Q, S)))

which holds iff the following formula:

c1(s(P, J,Q, S)) ∧ ¬ genc1(s(P, J,Q, S)) (CG)

is unsatisfiable in M(Arrays).
Now the problem of testing the satisfiability of array formulas is in general

undecidable. (The reader may refer to [28] for a short survey on this subject.)



Transformational Verification of Parameterized Protocols 37

However, some decidable fragments of the theory of arrays, such as the quantifier-
free extensional theory of arrays, have been identified [28]. Unfortunately, the
array formulas occurring in our formalization of the parameterized Peterson’s
protocol cannot be reduced to formulas in those decidable fragments. Indeed,
due to the assumptions made in Section 3 on the array formulas which are
used in the specifications of protocols, we need to test the satisfiability of array
formulas where the variables of type A are not quantified, while the variables of
type N can be quantified in an unrestricted way.

In order to perform the satisfiability tests required by our verification of the
parameterized Peterson’s protocol, we have followed the approach based on pro-
gram transformation which has been proposed in [21]. Some of these satisfiability
tests have been done in a fully automatic way by using the MAP transformation
system [17], which implements the unfold/fold proof strategy described in [21].
Examples of array formulas whose unsatisfiability we have proved in an auto-
matic way include: (i) the formula occurring in the body of clause 3 shown in
Section 4, and (ii) the formula (CG) shown above in this section. Some other
satisfiability tests have been done in a semi-automatic way, by interleaving fully
automatic applications of the unfold/fold proof strategy and some manual ap-
plications of the unfold/fold transformation rules.

Generalization steps are needed when, during Step (iii) of Phase A of our
transformation strategy, a new predicate definition is introduced to fold the in-
stances of the atom holds(X,F ). The introduction of suitable new definitions by
generalization is a crucial issue of the program transformation methodology [4].
The invention of these definitions corresponds to the discovery of suitable in-
variants of the protocol to be verified. Due to the undecidability of CTL for
parameterized protocols, it is impossible to provide a general, fully automatic
technique which performs the suitable generalization steps in all cases. However,
we have followed an approach that, in the case of the parameterized Peterson’s
protocol, works in a systematic way. This approach extends to the case of logic
programs with array formulas some generalization techniques which are used
for the specialization of (constraint) logic programs [8,14] and it can be briefly
described as follows.

The new predicate definitions introduced during Step (iii) of Phase A of the
transformation strategy are arranged as a tree DefsTree of clauses. The root
of DefsTree is clause 2. Given a clause N , the children of N are the predicate
definitions which are introduced to fold the instances of holds(X,F ) in the bodies
of the clauses obtained by unfolding N at Step (i) and not removed at Step (ii).

If the new predicate definitions are introduced without any guidance, then
we may construct a tree DefsTree with infinite paths, and the transformation
strategy may not terminate. In order to avoid the construction of infinite paths
and achieve the termination of the transformation strategy, before adding a
new predicate definition D to DefsTree as a child of a clause N , we match D
against every clause A occurring in the path from the root of DefsTree to N .
Suppose that A is of the form newp(X) ← α ∧ holds(X,ψ) and D is of the form
newq(X) ← δ ∧ holds(X,ψ). If the array formula α is embedded (with respect



38 A. Pettorossi, M. Proietti, and V. Senni

to a suitable ordering) into the array formula δ, then instead of introducing
D, we introduce a clause of the form gen(X) ← γ ∧ holds(X,ψ), where γ is
a generalization of both α and δ, that is, both M(Arrays) |= ∀ (α → γ) and
M(Arrays) |= ∀ (δ → γ) holds.

Thus, in order to fully mechanize our generalization technique we need to
address the following two problems: (i) the introduction of a formal definition
of the embedding relation between array formulas, and (ii) the computation of
the array formula γ from α and δ. Providing solutions to these two problems is
beyond the scope of the present paper. However, a possible approach to follow
for solving these problems consists in extending to logic programs with array
formulas the notions that have been introduced in the area of specialization of
(constraint) logic programs (see, for instance, [8,14]).

6 Related Work and Conclusions

The method for protocol verification presented in this paper is based on the
program transformation approach which has been proposed in [21] for the verifi-
cation of properties of locally stratified logic programs. We consider concurrent
systems of finite state processes. We assume that systems are parameterized, in
the sense that they consist of an arbitrary number of processes. We also assume
that parameterized systems may use arrays of parameterized length. The proper-
ties of the systems we want to verify, are the temporal logic properties which can
be expressed in CTL (Computational Tree Logic) [5]. Our method consists in:
(i) encoding a parameterized system and the property to be verified as a locally
stratified logic program extended with array formulas, and then (ii) applying
suitable unfold/fold transformations to this program so to derive a new program
where it is immediate to check whether or not the property holds.

In general, the problem of verifying CTL properties of parameterized systems
is undecidable [2] and thus, in order to find decision procedures, one has to
consider subclasses of systems where the problem is decidable. Some of these
decidable subclasses in the presence of arrays have been studied in [13], but
unfortunately, our formalization of the parameterized Peterson’s protocol does
not belong to any of those classes, because it requires more than two arrays of
natural numbers, and also requires assignments and reset operations.

As yet, our method is not fully mechanical and human intervention is needed
for: (i) the test of satisfiability for array formulas, and (ii) the introduction of new
definitions by generalization. We have discussed these two issues in Section 5.

Other verification methods for concurrent systems based on the transforma-
tional approach are those presented in [9,10,15,23,24].

In [9] it is presented a method for verifying CTL properties of systems con-
sisting of a fixed number of infinite state processes. That method makes use
of locally stratified constraint logic programs, where the constraints are linear
equations and disequations on real numbers. In this paper we have followed an
approach similar to constraint logic programming, but in our setting we have
array formulas, instead of constraints. The method presented here can easily be



Transformational Verification of Parameterized Protocols 39

extended to deal with parameterized infinite state systems by considering, for
instance, arrays of infinite state processes.

The paper [10] describes the verification of the mutual exclusion property
for the parameterized Bakery protocol which was introduced in [12]. In [10] the
authors use locally stratified logic programs extended with formulas of the Weak
Monadic Second Order Theory of k-Successors (WSkS) which expresses monadic
properties of strings. The array formulas considered in this paper are more ex-
pressive than WSkS formulas, because array formulas can express polyadic prop-
erties. However, there is price to pay, because in general the theory of array
formulas is undecidable, while the theory WSkS is decidable.

The method described in [15] uses partial deduction and abstract interpre-
tation of logic programs for verifying safety properties of infinite state systems.
Partial deduction is strictly less powerful than unfold/fold program transforma-
tion, which, on the other hand, is more difficult to mechanize when unrestricted
transformations are considered. One of the main objectives of our future research
is the design of suitably restricted unfold/fold transformations which are easily
mechanizable and yet powerful enough for the verification of program properties.

The work presented in [23,24] is the most similar to ours. The authors of
these two papers use unfold/fold rules for transforming programs and proving
properties of parameterized concurrent systems. Our paper differs from [23,24]
in that, instead of using definite logic programs, we use logic programs with
locally stratified negation and array formulas for the specification of concurrent
systems and their properties. As a consequence, also the transformation rules we
consider are different and more general than those used in [23,24].

Besides the above mentioned transformational methods, some more verifica-
tion methods based on (constraint) logic programming have been proposed in
the literature [7,11,19,22].

The methods proposed in [19,22] deal with finite state systems only. In partic-
ular, the method presented in [19] uses constraint logic programming with finite
domains, extended with constructive negation and tabled resolution, for finite
state local model checking, and the method described in [22] uses tabled logic
programming to efficiently verify μ-calculus properties of finite state systems
expressed in the CCS calculus.

The methods presented in [7,11] deal with infinite state systems. In particular,
[7] describes a method which is based on constraint logic programming and can
be applied for verifying CTL properties of infinite state systems by computing
approximations of least and greatest fixpoints via abstract interpretation. An
extension of this method has also been used for the verification of parameterized
cache coherence protocols [6]. The method described in [11] uses logic programs
with linear arithmetic constraints and Presburger arithmetic for the verification
of safety properties of Petri nets. Unfortunately, however, parameterized systems
that use arrays, like Peterson’s protocol, cannot be directly specified and verified
using the methods considered in [7,11] because, in general, array formulas cannot
be encoded as constraints over real numbers or Presburger formulas.



40 A. Pettorossi, M. Proietti, and V. Senni

Several other verification techniques for parameterized systems have been
proposed in the literature outside the area of logic programming (see [29] for a
survey of some of these techniques). These techniques extend finite state model
checking with various forms of abstraction (for reducing the verification of a
parameterized system to the verification of a finite state system) or induction
(for proving properties for every value of the parameter).

We do not have space here to discuss the relationships of our work with
the many techniques for proving properties based on abstraction. We only want
to mention the technique proposed in [3], which has also been applied for the
verification of the parameterized Peterson’s protocol. That technique can be
applied for verifying in an automatic way safety properties of all systems that
satisfy a so-called stratification condition. Indeed, when this condition holds
for a given parameterized system, then the verification task can be reduced to
the verification of a finite number of finite state systems that are instances of
the given parameterized system for suitable values of the parameter. However,
Peterson’s protocol does not satisfy the stratification condition and its treatment
with the technique proposed in [3] requires a significant amount of ingenuity.

Our verification method is also related to the verification techniques based
on induction (see, for instance, [18]). These techniques use interactive theorem
proving tools where many tasks are mechanized, but the construction of a whole
proof requires substantial human guidance. Our method has advantages and
disadvantages with respect to these techniques based on induction. On one hand,
in our approach we need neither explicit induction on the parameter of the system
nor the introduction of suitable induction hypotheses. On the other hand, as
already mentioned, our method needs suitable generalization steps which cannot
be fully mechanized.

References

1. K. R. Apt and R. N. Bol. Logic programming and negation: A survey. Journal of
Logic Programming, 19, 20:9–71, 1994.

2. K. R. Apt and D. C. Kozen. Limits for automatic verification of finite-state con-
current systems. Information Processing Letters, 22(6):307–309, 1986.

3. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. D. Zuck. Parameterized verification
with automatically computed inductive assertions. In Proceedings of CAV 2001,
Lecture Notes in Computer Science 2102, pages 221–234. Springer, July 2001.

4. R. M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44–67, January 1977.

5. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
6. G. Delzanno. Constraint-based verification of parameterized cache coherence pro-

tocols. Formal Methods in System Design, 23(3):257–301, 2003.
7. G. Delzanno and A. Podelski. Constraint-based deductive model checking. Inter-

national Journal on Software Tools for Technology Transfer, 3(3):250–270, 2001.
8. F. Fioravanti, A. Pettorossi, and M. Proietti. Automated strategies for specializing

constraint logic programs. In K.-K. Lau, editor, Proceedings of LOPSTR 2000,
London, UK, 24-28 July, 2000, LLNCS 2042, pages 125–146. Springer, 2001.



Transformational Verification of Parameterized Protocols 41

9. F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite
state systems by specializing constraint logic programs. In Proceedings of VCL ’01,
Florence, Italy, DSSE-TR-2001-3, pages 85–96. Univ. of Southampton, UK, 2001.

10. F. Fioravanti, A. Pettorossi, and M. Proietti. Verification of sets of infinite state
systems using program transformation. In Proceedings of LOPSTR ’01, Lecture
Notes in Computer Science 2372, pages 111–128. Springer, 2002.

11. L. Fribourg and H. Olsén. A decompositional approach for computing least fixed-
points of Datalog programs with Z-counters. Constraints, 2(3/4):305–335, 1997.

12. L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Com-
munications of the ACM, 17(8):453–455, 1974.

13. R. Lazic, T. C. Newcomb, and A. W. Roscoe. On model checking data-independent
systems with arrays with whole-array operations. In Communicating Sequential
Processes: The First 25 Years, LNCS 3525, pages 275–291. Springer, 2004.

14. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial
deduction: Control issues. Theory and Practice of Logic Programming, 2(4&5):
461–515, 2002.

15. M. Leuschel and T. Massart. Infinite state model checking by abstract interpreta-
tion and program specialization. In A. Bossi, editor, Proceedings of LOPSTR ’99,
Venice, Italy, LNCS 1817, pages 63–82. Springer, 1999.

16. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.
Second Edition.

17. MAP group. The MAP transformation system. Available from:
http://www.iasi.rm.cnr.it/˜proietti/system.html, 1995–2005.

18. K. L. McMillan, S. Qadeer, and J. B. Saxe. Induction in compositional model
checking. In Proceedings of CAV ’00, LNCS 1855, pages 312–327. Springer, 2000.

19. U. Nilsson and J. Lübcke. Constraint logic programming for local and symbolic
model-checking. In Proceedings of CL ’00, LNAI 1861, pp. 384–398. Springer, 2000.

20. G. L. Peterson. Myths about the mutual exclusion problem. Information Processing
Letters, 12(3):115–116, 1981.

21. A. Pettorossi and M. Proietti. Perfect model checking via unfold/fold transforma-
tions. In J. W. Lloyd, editor, First International Conference on Computational
Logic, CL 2000, LNAI 1861, pages 613–628. Springer, 2000.

22. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,
T. Swift, and D. S. Warren. Efficient model checking using tabled resolution.
In Proceedings of CAV ’97, LNCS 1254, pages 143–154. Springer-Verlag, 1997.

23. A. Roychoudhury and I. V. Ramakrishnan. Automated inductive verification of
parameterized protocols. In Proceedings of CAV ’01, pages 25–37, 2001.

24. A. Roychoudhury and C. R. Ramakrishnan. Unfold/fold transformations for au-
tomated verification. In M. Bruynooghe and K.-K. Lau, editors, Program Devel-
opment in Computational Logic, LNCS 3049, pages 261–290. Springer, 2004.

25. H. Seki. Unfold/fold transformation of stratified programs. Theoretical Computer
Science, 86:107–139, 1991.

26. V. Senni. Transformational verification of the parameterized Peterson’s protocol.
Unpublished note, July 2005.

27. N. Shankar. Combining theorem proving and model checking through symbolic
analysis. In CONCUR 2000, LNCS 1877, pages 1–16, Springer, 2000.

28. A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for
an extensional theory of arrays. In LICS ’01, pages 29–37. IEEE Press, 2001.

29. L. D. Zuck and A. Pnueli. Model checking and abstraction to the aid of parame-
terized systems (a survey). Computer Languages, Systems & Structures, 30(3-4):
139–169, 2004.



42 A. Pettorossi, M. Proietti, and V. Senni

Appendix

Below we give the definitions of the array formulas genc2 through genc8 occurring
in the program R of Section 4.

genc2(s(P, J,Q, S)) ≡def
∃i, l(rd(P, i, λ) ∧ l>1 ∧ rd(J, i, 1) ∧ rd(Q, i, 1) ∧ rd(S, 1, i) ∧

∀k(1≤k≤ l → ((rd(P, k,ncs) ∧ rd(Q, k, 0)) ∨
(rd(P, k, w) ∧ rd(J, k, 1) ∧ rd(Q, k, 0)) ∨
(rd(P, k, λ) ∧ rd(J, k, 1) ∧ rd(Q, k, 1)))) ∧

ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))

genc3(s(P, J,Q, S)) ≡def
∃i, k, l(2≤k<l ∧ ((rd(P, i, w) ∧ rd(J, i, k+1) ∧ rd(Q, i, k) ∧ rd(S, k, i))∨

(rd(P, i, λ)∧ rd(J, i, k)∧ rd(Q, i, k)∧ rd(S, k, i)))∧
∀j((1≤j≤ l ∧ ¬ (j = i)) → ((rd(P, j,ncs) ∧ rd(Q, j, 0)) ∨

(rd(P, j, w) ∧ rd(J, j, 1) ∧ rd(Q, j, 0)))) ∧
ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))

genc4(s(P, J,Q, S)) ≡def
∃m, l(1≤m≤ l ∧ ∀k(1≤k<m →

∃i(rd(P, i, λ) ∧ rd(J, i, k) ∧ rd(Q, i, k) ∧ rd(S, k, i))) ∧
∀j(1≤j≤ l → ((rd(P, j,ncs) ∧ rd(Q, j, 0)) ∨

∃k(1≤k<m ∧ ((rd(P, j, w) ∧ rd(J, j, k+1) ∧ rd(Q, j, k)) ∨
(rd(P, j, λ) ∧ rd(J, j, k) ∧ rd(Q, j, k)))))) ∧

ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))

genc5(s(P, J,Q, S)) ≡def
∃i, k, l(2≤k<l ∧ ((rd(P, i, w) ∧ rd(J, i, k+1) ∧ rd(Q, i, k) ∧ rd(S, k, i)) ∨

(rd(P, i, λ) ∧ rd(J, i, k) ∧ rd(Q, i, k) ∧ rd(S, k, i))) ∧
∃m(1≤m ≤ k ∧

∀u(1≤u≤m →
∃j(rd(P, j, λ) ∧ rd(J, j, u) ∧ rd(Q, j, u) ∧ rd(S, u, j))) ∧

∀n((1≤n≤ l ∧ ¬ (n= i)) →
((rd(P, n,ncs) ∧ rd(Q,n, 0)) ∨
∃r(1≤r≤m ∧

((rd(P, n,w) ∧ rd(J, n, r+1) ∧ rd(Q,n, r)) ∨
(rd(P, n, λ) ∧ rd(J, n, r) ∧ rd(Q,n, r))))))) ∧

ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))

genc6(s(P, J,Q, S)) ≡def
∃i, l, u(rd(P, i, cs) ∧ rd(J, i, u+1) ∧ rd(Q, i, u) ∧ rd(S, u, i) ∧ u+1= l ∧

∀j((1≤j≤ l ∧ ¬ (j = i)) → ((rd(P, k,ncs) ∧ rd(Q, k, 0)) ∨
(rd(P, k, w) ∧ rd(J, k, 1) ∧ rd(Q, k, 0)))) ∧

ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))



Transformational Verification of Parameterized Protocols 43

genc7(s(P, J,Q, S)) ≡def
∃i, l, u(rd(P, i, cs) ∧ rd(J, i, u+1) ∧ rd(Q, i, u) ∧ u+1= l ∧

∀k(1≤k<l → ∃i(rd(P, i, λ) ∧ rd(J, i, k) ∧ rd(Q, i, k) ∧ rd(S, k, i))) ∧
ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))

genc8(s(P, J,Q, S)) ≡def
∃i, l, u(rd(P, i, cs) ∧ rd(J, i, u+1) ∧ rd(Q, i, u) ∧ u+1= l ∧

∃m(1≤m≤ l ∧ ∀n(1≤n<m →
∃j(rd(P, j, λ) ∧rd(J, j, n) ∧ rd(Q, j, n) ∧ rd(S, n, j))) ∧

∀j((1≤j≤ l ∧ ¬ (j = i)) →
((rd(P, j,ncs) ∧ rd(Q, j, 0)) ∨
∃k(1≤k<m ∧

((rd(P, j, w) ∧ rd(J, j, k+1) ∧ rd(Q, j, k)) ∨
(rd(P, j, λ) ∧ rd(J, j, k) ∧ rd(Q, j, k))))))) ∧

ln(P, l) ∧ ln(J, l) ∧ ln(Q, l) ∧ ln(S, l))



Design and Implementation of AT : A Real-Time
Action Description Language

Luke Simon, Ajay Mallya, and Gopal Gupta

Department of Computer Science,
University of Texas at Dallas

Abstract. Real world applications of action description languages in-
volve systems that have real-time constraints. The occurrence of an ac-
tion is just as important as the time at which the action occurs. In order
to be able to model such real-time systems, the action description lan-
guage A is extended with real-time clocks and constraints. The formal
syntax and semantics of the extended language are defined, and the use
of logic programming as a means to an implementation of real-time A is
discussed.

1 Introduction

Non-monotonic reasoning has been an area of intense study in the recent past
[2]. Within non-monotonic reasoning, considerable attention has been paid to
reasoning with action and change [4]. Actions induce non-monotonic behavior
since they cause a change in the state of the world. Research in this area has
included the design of action description languages (ADLs): high level languages
that allow systematic reasoning about actions and state change in dynamic en-
vironments [2]. An example of such a language is the language A designed by
Gelfond and Lifschitz. The language A has been used to elegantly specify and
reason about a number of classical problems such as the Yale shooting problem
[4], and it has also been applied to a number of practical situations [15].

Action description languages describe the effect of actions on the truth value
of logical propositions. Given a system description in A, one can reason to find
out the state(s) that results from a sequence of actions, or given a resultant
state, deduce the sequence of actions that will lead us there. These actions are
assumed to occur in a sequential (i.e., non-concurrent) manner, with the time
intervals between two consecutive actions being arbitrary. Thus, the exact time
at which the actions occur, or the elapsed time interval between two actions is
of no consequence in such a language.

In practice, however, one has to reason about actions and change in a time-
bound world, where actions may have to be performed within a certain time, or
actions may have to be performed after a certain amount of time has elapsed.
For instance, if we consider the classical Yale shooting problem, one may wish
to model the fact that if the shooting does not take place within 30 seconds
then the person being shot may go out of range. A difficulty with modeling

P.M. Hill (Ed.): LOPSTR 2005, LNCS 3901, pp. 44–60, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Design and Implementation of AT : A Real-Time ADL 45

such time-dependent actions is that real-time is continuous, making its modeling
and reasoning hard. Recently, however, constraint logic programming over the
domain of real numbers has been shown to be suitable for modeling and reasoning
with such continuous time [6].

In this paper, we show how action description languages can be extended to
real-time action description languages. The notion of timed actions—an action
with time constraints attached—is introduced. Timed ADLs can be used to
systematically reason about actions and state-change in dynamic environments
in the presence of real-time constraints. Thus, if the action of dropping a glass
causes it to be broken, then with the added ability to reason with real-time, one
can reason that dropping a glass causes it to be broken, unless it is caught within
half a second (i.e., before it hits the floor).

In the rest of the paper we describe how we’ve extended the language A
with real-time to obtain the language AT . The complete syntax and semantics
of AT is given, along with a description of its prototype implementation that
we have recently completed. The model-theoretic semantics of action descrip-
tion languages is given in terms of a labeled transition system [4]. Similarly, the
model-theoretic semantics of real-time systems is given in terms of timed au-
tomata [1]. We combine these two notions and give the semantics of AT in terms
of timed transition systems. Next, we render this semantics executable by de-
notationally mapping it to Constraint Logic Programming over reals (CLP(R))
[7]. This executable semantics serves as an implementation of AT .

This paper makes a number of contributions: (i) it presents the Real-timed Ac-
tion Description Language AT that can be used to elegantly model actions and
change in the presence of real-time constraints; (ii) it presents the semantics of this
new language, along with its implementation, based on constraint logic program-
ming over reals; and, (iii) it paves the way for further constraint-based extensions of
action description languages (such as action description languages where actions
are constrained by the amount of resource, not just the presence or absence of a
resource), and the incorporation of continuous real-time in planning applications.

We assume that the reader is familiar with CLP(R) as well as with timed
automata. A detailed exposition can be found in [7] and [1] respectively.

2 Action Description Languages

Action description languages are high-level languages used to systematically rea-
son about actions and state change in dynamic environments. These languages
have proved to be a useful tool for solving various aspects of planning prob-
lems, such as plan specification and verification, planning with domain specific
constraints and plan diagnosis and explanation [15,2]. Given a partial descrip-
tion of the state of the world, and a sequence of actions and their properties,
it is possible to deduce the state induced by the action sequence. Also, given a
state that results from a sequence of actions, it is required to deduce information
about past states. In the next section, we describe the action description language



46 L. Simon, A. Mallya, and G. Gupta

A [4], with a discussion of its syntax and semantics. The language has a simple
syntax that is used to specify properties of actions and an automata-theoretic
semantics to reason about sequences of actions.

2.1 The Action Description Language A
The action description language A provides a mechanism for describing action
domains. Before we delve into the details of the language, we will introduce the
notion of fluents. Intuitively, a fluent is something whose value depends upon the
state, for example, the position of the ball on a soccer field. In this paper, we will
use propositional fluents that take on the truth values true and false according to
the state of the world. The language provides two different kinds of propositions:
(i) a value proposition, that describes the truth value of a fluent in a particular
state where the state can either be an initial state or a state resulting from a
sequence of actions; (ii) an effect proposition, that describes the effect a given
action has on a fluent.

The language A provides two different sets of symbols, fluent names and
action names. Fluents that might be optionally preceded by a ¬ are called fluent
expressions. A value proposition has the following syntax

F afterA1; . . . ;Am,

where F is a fluent expression and A1, . . . , Am (m ≥ 0) are action names. If
m = 0, the above value proposition is written as

initially F.

An effect proposition has the syntax

A causesF if P1, . . . , Pn,

where A is an action name, and each of F, P1, . . . , Pn (n ≥ 0) is a fluent ex-
pression. The effect proposition describes the effect that the action A has on
the fluent F , subject to the preconditions P1, . . . , Pn. If n = 0, the above effect
proposition is written as

A causesF

We say that a domain consists of a possibly infinite set of value propositions
and a finite set of effect propositions.

Example 1. The Yale Shooting domain [4], consists of the fluents Loaded and
Alive. The action names are Load, Shoot and Wait. The propositions consti-
tuting the domain are

initially¬Loaded,
initially Alive,
Load causesLoaded,
Shoot causes¬Alive if Loaded,
Shoot causes¬Loaded.

A state consists of a set of fluents. A fluent name F holds in state σ if F ∈ σ
and ¬F holds in σ if F �∈ σ. A transition function is a mapping Φ from the set



Design and Implementation of AT : A Real-Time ADL 47

of pairs (A, σ) to states. A structure is a tuple (σ0, Φ), where σ0 is called the
initial state and Φ is a transition function.

A structure (σ0, Φ) is a model of a domain D if every value proposition in D
is true in the structure, and for every action name A, every fluent name F and
every state σ, the following hold [4]:

1. if D includes an effect proposition describing the effect of A on F , whose
preconditions are valid in σ, then F ∈ Φ(A, σ).

2. if D includes an effect proposition describing the effect of A on ¬F whose
preconditions are valid in σ, then F �∈ Φ(A, σ).

3. if D does not include such effect propositions, then F ∈ Φ(A, σ) iff F ∈ σ.

3 Real-Time Systems

An important application of computing systems is in domains where response
within a hard time bound is critical for success. These systems are called real-
time systems. Examples include controllers for aircraft, industrial machinery and
robots. These domains, by their very nature, have certain constraints, which
if violated, can cause unacceptable consequences. Therefore it is essential to
have a systematic framework to reason about properties of actions in real-time
domains. The design of real-time systems has traditionally been studied from
the perspective of scheduling [9]. However, this approach has the limitation that
the only properties one can reason about are those which can be formulated
in terms of task execution times. Also, due to the safety critical nature of the
domain, the scheduling strategy is usually conservative, assuming that all task
execution times are known in advance, thereby precluding its application in
dynamic environments.

Due to these problems, it is fruitful to look at real-time systems from the plan-
ning perspective and explore the use of action description languages to reason
about real-time properties of actions. This requires action description languages
to be extended with the notion of continuous time. Time is modeled as a con-
tinuous entity, because in most real-time systems, the delay between events can
be arbitrarily small. The theory of timed automata [1] has become the standard
for analysis of real-time systems with continuous time.

3.1 Timed Automata

Timed automata are finite state automata with a finite set of clocks, which take
values over the reals. While the clocks advance their values in the states of the
timed automaton, transitions are assumed to be instantaneous. However, a tran-
sition may reset some of the clocks to zero (thus these clocks can be thought
of as stopwatches). At any instant of time, the reading on a clock shows the
time that has elapsed since the clock was last reset. Time is assumed to ad-
vance at the same rate on all of the clocks. A clock constraint is associated
with each transition of the timed automaton. The transition occurs only if the



48 L. Simon, A. Mallya, and G. Gupta

clock constraint is satisfied. A clock constraint is also associated with each state
of the timed automaton. The automaton can remain in a state as long as the
clock constraint associated with that state is satisfied. Given a set X of clocks,
the set of clock constraints C(X) is given by the following grammar:

ϕ := x ≤ c | c ≤ x |x < c | c < x |ϕ1 ∧ ϕ2

Formally, a timed automaton is defined as a tuple (S, S0, Σ,X, I, E), where

– S is a finite set of states
– S0 ⊆ S is a set of initial states
– Σ is a finite alphabet
– I : S → C(X) is a mapping that maps states in S to clock constraints
– E ⊆ S ×Σ ×C(X)× 2X × S is a set of transitions. Each tuple (s, a, ϕ, λ, s′)

in E corresponds to a transition from location s to location s′ labeled with
a, a constraint ϕ that specifies when the transition is enabled, and a set of
clocks λ ⊆ X, which are reset by the transition.

A comprehensive survey of Timed Automata can be found in [1].

s0 s1

y <= 5
y <= 9

a

y >= 2      y:=0

b

      x := 0
y >= 3      x >= 4

x <= 8

Fig. 1. A simple timed automaton

Consider the example timed automaton in Fig. 1. It consists of two states
s0 and s1, s0 being the initial state. There is a transition from s0 to s1 on the
symbol a subject to the clock y being greater than or equal to 2 time units,
while resetting the clock y, and a transition from s1 to s0 labeled by the symbol
b, subject to the clock x being greater than or equal to 4 units and the clock y
being greater than or equal to 3 units. The clock x is reset by this transition.

3.2 Shortcomings of A
The language A allows one to reason about properties of temporal sequences of
actions. In other words, time is dealt with in a qualitative manner. On the other
hand, for real-time domains, it is essential to reason about time in a quantitative
manner, i.e., in addition to reasoning about sequences of actions, it is also essen-
tial to reason about the deadlines that these actions have to meet. To the best
of our knowledge, current action description languages do not have the capabil-
ity to reason about real-time in this manner. There are many situations where
this capability is needed. For example, if we consider the Yale shooting problem,
we may want to reason that if a loaded gun is shot, then ¬Alive will become
true only if the shot is fired within 30 seconds of loading the gun (otherwise the



Design and Implementation of AT : A Real-Time ADL 49

person will get away, or the ammunition will not work). Similarly, we may want
to reason that the drop action will cause a breakable object to shatter, unless
it is caught within 0.5 seconds, thus preventing it from hitting the ground and
breaking.

Action description languages can be used for specifying controllers and de-
veloping plans for machines, plants, and robots [15]. In these real-life situations,
most actions will have severe time constraints attached. One can argue that an
action description language, augmented with the capability to reason with time,
will have significantly more applications; for example, in safety-critical systems.
We next propose an extension to the action description language A, which pro-
vides the machinery to specify and reason about real-time actions.

4 The Timed Action Description Language AT

We would like to be able to apply action description languages such as language
A to real-time systems. Extending action description language A with real-time
involves augmenting actions with clock constraints describing when the action
occurs, and effect propositions must be augmented with preconditions on clocks
and the ability to mutate clocks. These extensions give rise to a language we call
AT , which is a conservative extension of language A in the sense that language
A is a syntactic and semantic subset of AT . The following subsections cover AT

syntax and semantics.

4.1 Syntax

A real-time action α is defined as the pairing of an action name with a list of its
clock constraints. In AT , this is written as

A at T1, . . . , Tn

where T1 . . . , Tn (n ≥ 0) are clock constraints of the form C ≤ E, C ≥ E, C < E,
and C > E, where C is a clock name and E is a clock name or a clock name plus
or minus a real valued constant, and when n = 0 the at clause can be dropped.

Now that we can explicitly state when an action occurs, value propositions are
extended in a straightforward manner, given fluent expressions F1, . . . , Fm (m >
0) and real-time actions α1, . . . , αn (n ≥ 0) then a real-time value proposition is
of the form:

F1, . . . , Fm after α1; . . . ;αn

Note how inconsistent descriptions can arise from a real-time value proposition
including a sequence of actions occurring at inconsistent times. However, even a
language as simple as language A allowed for inconsistent descriptions, so clock
constraints are simply another source of inconsistency. Furthermore, the typical
abbreviation when the sequence of actions is empty, i.e., n = 0 is still written

initially F1, . . . , Fm



50 L. Simon, A. Mallya, and G. Gupta

These degenerate forms of real-time value propositions simply serve as a means to
describe the start state of a real-time system by asserting which fluents are true or
false in the start state. Hence these degenerate real-time value propositions serve
the exact same purpose as in language A. As will be discussed in section 4.3,
all clocks are assumed to be reset when initially entering the start state of a
real-time system.

The most significant extension occurs with the effect proposition. Real-time
effect propositions, also sometimes referred to as action rules, must be able to
describe the fluent preconditions as well as the clock preconditions for the rule
to apply. Moreover, in addition to describing how fluents are mutated, real-time
effect propositions must also be able to describe how clocks are changed, by
reseting some subset of them. So real-time effect propositions are of the form

A causes F1, . . . , Fm resets C1, . . . Cn when T1, . . . , Tk if P1, . . . , Pi

for action name A, fluent expressions F1 . . . , Fm, P1, . . . , Pi (m, i ≥ 0), clock
names C1, . . . , Cn (n ≥ 0), and clock constraints T1, . . . , Tk (k ≥ 0), where
m + n + k + i > 0. As usual, when m, n, k, or i is zero the keywords causes,
resets, when, or if respectively, can be dropped. The resets clause denotes the
clocks that are to be reset assuming the fluent preconditions and when clause
are satisfied. Clocks that are not reset continue to advance.

One last extension is needed [4]: A special action name wait denotes the
action of waiting for time to elapse. Therefore it acts as a sort of wild-card that
matches all other action names. This is demonstrated in the following examples.

4.2 Examples

Example 2. The Real-time Falling Object domain, a modification of an example
from [4] with the notion that a dropped object can be caught before it hits the
ground assuming the object takes 1 second to hit the ground.

Drop causes ¬Holding, Falling resets Clock if Holding, ¬Falling
Catch causes Holding, ¬Falling when Clock ≤ 1 if ¬Holding, Falling
wait causes Broken, ¬Falling when Clock > 1 if ¬Holding, Falling

Firstly, note that the assumption that units are in seconds is merely a con-
vention used in this example. As far as the language AT is concerned, all
clocks are simply real valued variables. Furthermore, as is the case with lan-
guage A, the language AT possibly describes many possible worlds. In one
of these worlds initially Holding,¬Falling,¬Broken is true, and therefore
Broken after Drop; wait at Clock = 2 also holds as the object is dropped
and then allowed to fall to the ground. Similarly, in that same world, if one
takes too long to catch the object, the object still shatters on the ground. Hence
in the aforementioned world Broken after Drop; Catch at Clock = 2 is also
true. However, if the object is dropped and then is successfully caught, say half a
second after dropping and therefore before it hits the ground, then as expected,
the object is not broken by the sequence of events, i.e., ¬Broken after Drop;
Catch at Clock = 0.5 is true.



Design and Implementation of AT : A Real-Time ADL 51

Other possible worlds include the object starting out already in a falling
state, while another world could even have the object already broken. The more
information given in a description, the fewer possible worlds exist that satisfy
the description. For example, assume that in addition to the original Real-time
Falling Object domain description, it is also given that Broken after Drop;
Catch at Clock = 0.5 is true, then it can safely be deduced that the object
was broken to begin with, i.e., according to this new description it is true that
initially Broken.

Example 3. Similarly, the real-time Soccer Playing domain is a modification of
a domain described in [20]. It has the following domain description:

ShotTaken causes ¬HasBall, ¬ClearShot, Goal when Clock ≤ 0.5
if HasBall, ClearShot, ¬Goal

PassBall causes ClearShot resets Clock when Clock ≤ 1
if ¬ClearShot

wait causes ¬HasBall, ¬ClearShot when Clock > 0.5
if HasBall, ClearShot

wait causes ¬HasBall, when Clock > 1 if HasBall

In the real-time Soccer Playing domain, a player has the ball and has a clear
shot at the goal, then it is assumed that a goal is scored if the player can take a
shot within 0.5 time units. If the player does not take the shot within this time,
the ball gets stripped by an opponent. Also, a player who has possession of the
ball, but no clear shot at the goal can pass the ball to a team-mate who has a
clear shot. The pass has to be completed within 1 time unit. Failure to do so
results in the ball getting intercepted by an opponent.

In one possible world, initially HasBall, ClearShot, ¬Goal holds and there-
fore Goal after ShotTaken at Clock = 0.2 is also true. However, in an alter-
native world, if the player does not have a clear shot, and the ball is passed
to a teammate who has a clear shot, then if the teammate does not take the
shot within 0.5 time units, possession of the ball is lost. Therefore the statement
¬HasBall afterPassBall; wait at Clock = 1 is true.

4.3 Semantics of AT

Now that the language AT has been informally introduced, we can more for-
mally specify its semantics. This should not only aid in the understanding of
the language, but should also serve as a measure of the correctness of its imple-
mentations. As is the case for action language A, the semantics of AT is given
in terms of a transition system. However, AT ’s transition system is timed and
therefore is technically a timed automaton with a finite region graph [1].

The semantics of AT is an extension of the semantics for language A. A state
σ is a pair (Φ,Θ) where Φ is a subset of fluents and Θ is a function assigning to
each clock name a non-negative real value. Let F be a fluent, then F holds in Φ
if F ∈ Φ, and ¬F holds in Φ if F /∈ Φ. This truth valuation can be extended to
sets of fluent expressions S as follows. S holds in Φ if every F ∈ S holds in Φ.



52 L. Simon, A. Mallya, and G. Gupta

A clock valuation Θ satisfies a set of time constraints Ω (see section 4.1), written
S(Θ,Ω) if and only if replacing every clock name C in Ω with Θ(C) results in
a consistent set. This can be extended to states in a straightforward manner,
S((Φ,Θ), Ω) ≡ S(Θ,Ω).

A real-time action α is simply a pairing (A,Ω) of an action name A with a
set of time constraints Ω, which denotes the time constraints on the occurrence
of a specific instantiation of the action named A. In the definition of a model
we will also need to enforce the notion that the clocks monotonically increase
during a state transition unless they are explicitly reset, and so we say that one
clock valuation Θ is less than another valuation Θ′ except for the reset clocks
Π, written Θ ≤Π Θ′ whenever ∀C.Θ(C) ≤Π Θ′(C). This can be extended to
states such that (Φ,Θ) ≤Π (Φ,Θ′) if and only if Θ ≤Π Θ′.

Let −→ be a ternary relation between egress states, actions, and ingress
states such that σ

α−→ σ′ if and only if σ ≤∅ σ′′, α = (A,Ω), and S(σ′′, Ω),
then −→ is called a transition relation. Informally, σ

α−→ σ′ means that in state
σ executing action α causes the current state to mutate into σ′. Given a start
state σ0 = (Φ0, Θ0) for some set of fluents Φ0 and clock valuation function Θ0
such that ∀C.Θ0(C) = 0, i.e., all clocks are initially reset, a transition relation
−→ determines a system M = (σ0,−→). Let Mα1;...;αn denote the possible
set of states that a system could be in after executing the sequence of actions
α1; . . . ;αn in system M . The set of states s = Mα1;...;αn where M = (σ0,−→)
is recursively defined as

{σ0} if n = 0
{σ′ | σ ∈ Mα1;...;αn−1 ∧ σ

αn−→ σ′} otherwise

Let s = Mα1;...;αn , then if Mα1;...;αn is empty then the sequence of actions is said
to be inconsistent. Otherwise if s is nonempty, then real-time value proposition

F1, . . . , Fm after α1; . . . ;αn

is true (false) in a system M , if for all (Φ,Θ) ∈ s, {F1, . . . , Fm} holds (does
not hold) in Φ. Otherwise the truth value of such a proposition is unknown,
written ⊥, as in some possible states the system fluents hold and in others they
do not hold. We write VM (P ) to denote this truth valuation of real-time value
propositions P in system M . The truth valuation can be extended to sets of
systems Γ , also known as “possible worlds”, in the following manner. Firstly, let
Γ be a set of systems, then Γα1;...;αn = {Mα1;...;αn | M ∈ Γ}. Given a set of
systems Γ , then a real-time value proposition P ≡ F1, . . . , Fm after α1; . . . ;αn

is assigned a truth value VΓ (P ) as follows

inconsistent , if Γ = ∅ or ∅ ∈ Γα1;...;αn

true , otherwise if ∀M ∈ Γ.VM (P ) = true
false , otherwise if ∀M ∈ Γ.VM (P ) = false
⊥ , otherwise.

Again, inconsistency arises when there are no possible worlds corresponding to
the proposition and ⊥ arises when the proposition holds in some worlds but does
not hold in other worlds, as is the case in [4].



Design and Implementation of AT : A Real-Time ADL 53

Before we can define the models of a domain description, we need the follow-
ing additional nomenclature. Let reset(Φ,Θ,A) be the set of all clocks reset by
effects propositions in D with preconditions satisfied in state σ. Furthermore,
we say that an action A in state σ causes fluent expression F whenever there
exists an effects proposition P in D with preconditions satisfied in state σ such
that F occurs in the causes clause of P .

Now we can define the models of a real-time domain description D. A system
M is said to be a model for D when every real-time value proposition P in D is
true in M , i.e., VM (P ) = true. Furthermore, the transitions in a model must also
satisfy the constraints imposed by the domain description’s effect propositions.
Hence (Φ1, Θ1)

(A,Ω)−→ (Φ2, Θ2) in M if and only if there exists a Θ′ such that
S(Θ′, Ω), Θ1 ≤∅ Θ′ ≤reset(Φ1,Θ′,A) Θ2, and according to the domain description
D one of the following holds:
1. action A in state (Φ1, Θ

′) causes F and F ∈ Φ2
2. action A in state (Φ1, Θ

′) causes ¬F and F /∈ Φ2
3. action A in state (Φ1, Θ

′) does not cause F or ¬F , and F ∈ Φ2 if and only
if F ∈ Φ1

Now we can define entailment. Let Γ be the set of all models of D, then a real-
time domain description D entails a real-time value proposition P , if VΓ (P ) =
true, D does not entail P , if VΓ (P ) = false, and it is unknown if D entails P ,
if VΓ (P ) = ⊥.

Discussion. The semantics do not prevent different clocks from advancing at
different rates, as is the case in the real world. However, it is up to the specific
domain description whether or not clocks are further constrained to be synchro-
nized. These semantics are general enough to be applied to other hybrid planning
domains, not necessarily involving time, e.g., continuously consumed resources
such as battery power or fuel, where it is even more important to be able to
model various resources that are consumed at different rates.

4.4 Examples Formalized

The semantics of the real-time Soccer Playing and the real-time Falling Object
domains is shown in Fig. 2. These domains were introduced in Section 4.2. The
semantics of the real-time Falling Object domain and the real-time Soccer Play-
ing domain are defined by the timed transition systems shown in Fig. 2(a) and
Fig. 2(b) respectively. These transition systems define the transition relation −→
corresponding to the definitions of these domains given in Section 4.2. Note that
in the figure, t denotes the clock variable.

Choosing an initial state for a transition system, yields a timed automaton
M , which defines a possible world specified by the AT description of the cor-
responding real-time domain. Each possible choice of an initial state yields a
different timed automaton and the set of all such timed automata is the set of
possible worlds specified by the real-time domain description.



54 L. Simon, A. Mallya, and G. Gupta

clearshot

hasball

goal

clearshot

hasball

goal

hasball

clearshot

goal

clearshot

goal

hasball

shotTaken

wait

wait

passBall

t <= 0.5

t > 0.5

t > 1

t <= 1
t := 0

falling

broken

holding

falling

broken

holding

falling

broken

holding

drop       t := 0

wait
t > 1catch            t <= 1

(a)

Real-Time Soccer Playing Domain Real-Time Falling Object Domain

(b)

Fig. 2. Examples of Real-Time Domains

5 Implementation

The language AT can easily be implemented using constraint logic programming
over the real numbers (CLP(R)). The implementation has been done using SIC-
Stus Prolog system. A top-level driver is used to parse an input file and then
provide an interactive prompt for the user to submit queries against the descrip-
tion in the form of real-time value propositions. The design pattern used is to
directly model both the syntax using a Definite Clause Grammar (DCG) and
the denotational semantics, using syntax-directed valuation functions written
as Horn clauses with real constraints that map AT description parse trees to
their denotations. As the predicates that implement these valuation functions
are more or less a straightforward encoding of the formal semantics of AT into
CLP(R), proofs of the soundness and completeness of the implementation are
also straightforward, yet tedious. Therefore due to lack of space such proofs are
omitted.

If Fs is a list of fluent expressions and As is a sequence of real-time actions,
then an evaluation of a query of the form

Fs after As

is implemented by the following predicate

after( PT, Fs, As, V ) :-
PT = parseTree( VPs, EPs, GCs, GFs ),
setof( W, execute( VPs, EPs, GCs, GFs, As, W ), Ws ),
val( Fs, Ws, V ).

where PT is the parse tree of the AT domain description that the query is against
and V is the response to the query, with values: yes when the query is entailed by
the description, no when the query is not entailed, unknown when the description



Design and Implementation of AT : A Real-Time ADL 55

describes at least one world, i.e., model, in which the query is true and another
in which it is false. The implementation is also capable of recognizing when a
description or query is inconsistent and can also respond to such queries as be-
ing inconsistent. The higher-order setof is used to get a set of possible worlds Ws
corresponding to the domain description and queried action sequence. The value
V is calculated from these possible worlds using the val predicate, which mir-
rors the denotational semantics valuation function VΓ (P ) defined in section 4.3.
However, in the implementation, the set of worlds is actually a set of possible
residual states, i.e., the possible resultant states that could arise according to
the domain description P and action sequence As.

A residual state is defined by the predicate execute which takes the query’s
sequence of actions As and generates a possible residual state W according to the
pertinent elements of the domain description: the list of value propositions VPs,
the list of effects propositions EPs, the list of global clock names GCs, and the
list of global fluent names GFs.

execute( VPs, EPs, GCs, GFs, As, W ) :-
applyAfterConstraints( VPs, EPs, GCs, GFs, SS ),
transitionClosure( EPs, GCs, GFs, SS, As, W ),
validState( GFs, W ).

The predicate execute first determines the constraints on a possible start state SS
from the domain description’s value propositions and effects propositions, using
the applyAfterConstraints predicate. Then the transitionClosure predicate
is used to determine the constraints on the state reached via a path determined
by the sequence of actions �As and the domain’s effect propositions. Finally, the
term representing the residual state is grounded using the validState predicate.

The predicate transitionClosure implements a transitive closure of the
transition predicate, which implements the transition relation −→ defined in
section 4.3.

transition( EPs, GCs, GFs, S1, C1, A, TCs, S2, C2 ) :-
satisfiesAllTimeConstraints( GCs, TCs, C1 ),
applyEffectsRules(GCs,GFs,EPs,S1,C1,A,S2,C2,FFs,RCs),
inertia( GFs, S1, S2, FFs ),
increasingTime( GCs, C1, C2, RCs ).

The egress state of the transition is represented by two lists S1 and C1 of fluent
values (true and false) and clock values respectively, while the ingress state is
similarly represented by S2 and C2. The list of fluent values represents the truth
value table for the state, which is more efficient than a set representation due to
the multiple physical representations of a set, which unnecessarily complicates
search. The clock values are similarly implemented as a value table using CLP(R)
variables, which allows for a declarative implementation, yet efficient constraint
solving. The predicate is implemented by first checking that all time constraints
on the time of occurrence of the action �A can be satisfied. Then the set of effects



56 L. Simon, A. Mallya, and G. Gupta

propositions which can apply in such a situation are used to determine some of
the fluent constraints (i.e., forced fluents FFs) on the ingress state in the main
goal applyEffectsRules. The remaining fluent constraints are determined by
the set difference of global fluent names GFs and forced fluents FFs in the inertia
predicate. Finally, the increasingTime predicate uses CLP(R) constraints to
force the clocks in the egress state C1 to be less than or equal to the respective
clocks in the ingress state C2, with exceptions for the clocks that are listed in
RCs as being reset.

The main goal applyEffectsRules enforces that every effects proposition
either applies or does not apply by traversing through the list of effects proposi-
tions. Because of the issues involved in using negation alongside CLP(R), nega-
tion is implicitly used by defining a predicate and its dual as follows

effectRuleApplies( GCs, GFs, EP, S1, C1, A1, S2 ) :-
EP = causes( A2, _, TCs, EFs, CFs ),
equalNames( A1, A2 ),
satisfiesAllTimeConstraints( GCs, TCs, C1 ),
satisfiesAllFluents( GFs, S1, CFs ),
satisfiesAllFluents( GFs, S2, EFs ).

effectRuleDoesNotApply( _, _, EP, _, _, A1 ) :-
EP = causes( A2, _, _, _, _ ),
not( equalNames( A1, A2 ) ).

effectRuleDoesNotApply( GCs, _, EP, _, C1, A1 ) :-
EP = causes( A2, _, TCs, _, _ ),
equalNames( A1, A2 ),
notSatisfiesAllTimeConstraints( GCa, TCs, C1 ).

effectRuleDoesNotApply( _, GFs, EPs, S1, _, A1 ) :-
EP = causes( A2, _, _, _, CFs ),
equalNames( A1, A2 ),
notSatisfiesAllFluents( GFs, S1, CFs ).

Hence while effectRuleApplies is true when the given effects proposition EP’s
preconditions are satisfied by egress state S1 and the action named A1, the dual
predicate effectRuleDoesNotApply is true when some precondition is not sat-
isfied. Also note that the explicit use of negation of equalNames is not necessary,
but since A1 and A2 are always ground and the predicate’s definition does not
make use of CLP(R), this limited use of negation by failure simplifies the im-
plementation. Effects propositions are represented by terms of the form

causes( A, RCs, TCs, EFs, CFs )

where A is the action name, RCs is the list of reset clocks, TCs is the list of time
constraint preconditions, EFs is the list of effected fluent expressions, and CFs is
the list of fluent preconditions.

The implementation of the condition satisfaction predicates and their duals
are relatively straightforward, where the predicates involving real-time are im-
plemented using CLP(R) constraints and the other predicates are implemented



Design and Implementation of AT : A Real-Time ADL 57

as pure Horn clauses, with the exception of a limited use of negation as failure
on ground goals.

satisfiesAllFluents( [], [], _ ).
satisfiesAllFluents( [ N | Ns ], [ _ | Fs ], CFs ) :-

not( member( N, CFs ) ),
not( member( -N, CFs ) ),
satisfiesAllFluents( Ns, Fs, CFs ).

satisfiesAllFluents( [ N | Ns ], [ true | Fs ], CFs ) :-
member( N, CFs ),
satisfiesAllFluents( Ns, Fs, CFs ).

satisfiesAllFluents( [ N | Ns ], [ false | Fs ], CFs ) :-
member( -N, CFs ),
satisfiesAllFluents( Ns, Fs, CFs ).

Again, while this use of negation as failure could be eliminated via explicit
definition of a dual predicate, doing so is unnecessary as the negated predicate
is ground and does not involve the use of CLP(R) or negation in its definition.
satisfiesAllFluents simultaneously recurses through a list of global fluent
names Ns and a given state’s fluent value table Fs, verifying that the fluents are
either not mentioned in the preconditions CFs or that their occurrence in CFs is
satisfiable.

The definition of satisfiesAllTimeConstraints and its dual is more com-
plicated, as it involves the manifestation of CLP(R) constraints, which are then
applied to the clocks in question. The predicate satisfiesAllTimeConstraints
recurses through the list of time constraints on clocks, and asserts them. Their
satisfiability is determined by the CLP(R) engine.

satisfiesAllTimeConstraints( _, [], _ ).
satisfiesAllTimeConstraints( GCs, [ T | Ts ], Cs ) :-

satisfiesTimeConstraint( GCs, T, Cs ),
satisfiesAllTimeConstraints( GCs, Ts, Cs ).

In other words, the top-level implementation traverses through the list of time
constraints Ts, so that each time constraint can be individually applied to the
given set of clocks Cs. Each individual time constraint is represented as a term
and only manifested into actual CLP(R) constraints when needed, so that sub-
sequent applications of the constraints do not alter the original definition of
effects propositions. Note that w.r.t. checking for satisfiability, the exact time
at which a particular action happened is unimportant, what matters is that the
accumulated constraints are consistent.

A prototype based on the ideas above is operational and has been tested
on a number of benchmarks. Note that the current prototype implementation
can be used only for computing states that result after a series of timed-actions
are performed. For these kinds of computations a Prolog system extended with
CLP(R) suffices (thus the SICStus Prolog system is sufficient). We are currently
working on extending the system so that one can pose queries to determine



58 L. Simon, A. Mallya, and G. Gupta

a sequence of actions that causes a desired property to hold. Note that these
kinds of (non-timed) queries are hard to specify and compute in A as well.
Implementing these extensions will require more advanced implementations of
logic programming such as those based on tabling. Note however, that if a time
bound is imposed on the sequence of actions to be queried, then one can still
avoid the use of tabled logic programming since the time bound constraints will
ensure that cycles are not traversed infinitely.

6 Related Work

Several frameworks have been proposed to reason about the real-time aspects
of actions. Most of them are extensions of the Situation Calculus or the Event
Calculus, with features like occurrences and narratives, and some representation
of real-time. Though these techniques provide a powerful formal mechanism for
reasoning about real-time actions, there is a dearth of tools implementing them.
This is because these techniques are usually axiomatized in terms of first-order
logic and therefore do not allow for a tractable implementation.

Logic programming has been extensively studied in the context of implemen-
tation of the Event Calculus and its extensions. It has also been demonstrated
that logic programming is a viable means for implementing action description
languages, which are fragments of the Situation Calculus. In this paper, we show
how CLP(R) can be used as an elegant framework for implementing reasoning
tools based on the Situation and Event Calculi.

We now survey related work in the area: [17,18] provide a method for reasoning
about concurrent, real-time actions in the Situation Calculus, using a solution to
the frame problem. [10] describes methods to reason about narratives with real-
time in the Situation Calculus. [16] generalizes the approach in [18] to the Sit-
uation Calculus with narratives and occurrences. All these formalisms are based
on axiomatic reasoning using first-order logic. Implementing a reasonable model
of continuous real-time, which is essential to develop a practical reasoning tool be-
comes difficult in these frameworks due to decidability issues. We use CLP(R) to
realize a simple and elegantmodel of real-time,which allowsus todevelop aworking
implementation of a reasoning tool for real-time actions.

Other techniques for reasoning with real-time include [12], which models
time as being discrete, whereas our method provides a more general continuous
model of time. [13] describes a method for reasoning about time in a temporal
rather than a numerical manner. [11] presents real-time extensions of the Event
Calculus, but does not provide an implementable model of real-time. Though
our technique has been developed in the context of action description languages,
it can also be extended to the Situation Calculus, the Event Calculus and their
various extensions.

Action description languages have traditionally been used for reasoning about
the effect of actions and change of state in various domains in [2,5,8,19]. However
these languages do not provide the ability to reason about actions in real-time
domains.



Design and Implementation of AT : A Real-Time ADL 59

7 Conclusions

Practical applications of action description languages require the ability to de-
scribe and reason about real-time, especially in safety-critical domains. We have
presented a method of extending the syntax and semantics of action description
languages with real-time. We have also presented an implementation of AT , a
real-time extension of action description language A.

We are currently investigating the integration of techniques developed for
handling concurrent actions in action description languages [2] with the methods
described in this paper. This is because a large class of safety-critical systems
consist of multiple concurrent subsystems, which exhibit real-time behavior. We
would also like to provide the ability to query for a sequence of actions that causes
a desired property to hold. Future work also includes investigating generalized
constraint action description languages, in which actions may have arbitrary
constraints (e.g., resource constraints) attached. A timed ADL is a special case
of such a constraint ADL.

References

1. R. Alur Timed Automata, NATO-ASI 1998 Summer School on Verification of
Digital and Hybrid Systems.

2. C. Baral, Knowledge Representation, Reasoning and Declarative Problem Solving,
Cambridge University Press, 2003.

3. E. Clarke, O. Grumberg, D. Peled. Model Checking. MIT Press. 1999.
4. M. Gelfond and V. Lifschitz Representing Action and Change by Logic Programs

Journal of Logic Programming,Vol. 17, pp. 301-321, 1993.
5. M. Gelfond and V. Lifschitz Action Languages, Electronic Transactions on AI, vol.

3, No. 16, 1998
6. G. Gupta and E. Pontelli A Constraint based Approach to the Specification and

Verification of Real-Time Systems, In Proc. IEEE RTSS, pp. 230-239, 1997.
7. K. Marriott and P. Stuckey. Constraint Programming. MIT Press. 1998.
8. V. Lifschitz, Answer set planning, In Proc. ICLP ’99, LNCS, 1999.
9. Jane W.S. Liu, Real-Time Systems, Prentice Hall, NJ, 2000.

10. R. Miller and M. Shanahan, Narratives in the Situation Calculus, In Journal of
Logic and Computation, 1994.

11. R. Miller and M. Shanahan, Some Alternative Formulations of the Event Calculus,
In Computational Logic, LNAI vol 2408, Springer, 2002.

12. E. Sandewall, Features and Fluents (vol. 1): The Representation of Knowledge
about Dynamic Systems, Oxford University Press, 1995.

13. P. Doherty et al., TAL: Temporal Action Logics Language, http://www.ep.
liu.se/ea/cis/1998/015/

14. S. Mukhopadhyay and A. Podelski, Model Checking for Timed Logic Processes,
Computational Logic 2000, pp. 598-612.

15. M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, M. Barry, An A-Prolog deci-
sion support system for the Space Shuttle, In Proc. PADL ’01, LNCS, pp. 169-183.

16. J. Pinto, Occurrences and narratives as constraints in the branching structure of
the Situation Calculus, InJournal of Logic and Computation, 8:777-808, 1994.



60 L. Simon, A. Mallya, and G. Gupta

17. R. Reiter, Natural actions, concurrency and continuous time in the situation cal-
culus, In Proc. KR ’96, Morgan-Kauffman,pp. 2-13.

18. J. Pinto, R. Reiter, Reasoning about time in the situation calculus. In Annals of
Mathematics and Artificial Intelligence, 14:251-268.

19. H. Turner, Representing actions in logic programs and default theories: A situation
calculus approach, Journal of Logic Programming, vol. 31, pp. 245-298, 1997.

20. U.D. Ulusar and H.L. Akin Design and Implementation of a Real Time Planner
for Robots Proc. TAINN 2004, pp. 263-270.



An Algorithm for Local Variable Elimination
in Normal Logic Programs

Javier Álvez and Paqui Lucio

Faculty of Computer Science, Basque Country University,
San Sebastián, Spain

{jibalgij, jiplucap}@si.ehu.es

Abstract. A variable is local if it occurs in a clause body but not in its
head. Local variables appear naturally in practical logic programming,
but they complicate several aspects such as negation, compilation, mem-
oization, static analysis, program approximation by neural networks etc.
As a consequence, the absence of local variables yields better performance
of several tools and is a prerequisite for many technical results. In this
paper, we introduce an algorithm that eliminates local variables from a
wide proper subclass of normal logic programs. The proposed transfor-
mation preserves the Clark-Kunen semantics for normal logic programs.

1 Introduction

Local variables are very often used —as auxiliaries— to store intermediate re-
sults in logic programs. Their values are passed from one atom to another in
a clause body, but they are not lifted to the head. Whilst they are useful in
practical logic programming, the occurrence of local variables could cause in-
efficiency or even prevent the satisfaction of some properties. In the area of
negation in logic programming, several results are restricted to local variable free
(lvf, for short) programs or are less efficiently applicable when local variables
are present. For instance, local variables lead to floundering problems in nega-
tion as failure [8]. In addition, their presence prevents completeness results for
more recent techniques like intensional negation [5] and other transformational
negation techniques [20, 25]. In several computational mechanisms proposed for
constructive negation [2, 6, 7, 11, 23], local variables force one to deal with uni-
versal quantification, which is not easy to compute in an efficient manner. Other
logic programming areas where local variables lead to technical problems are
related to compilation, memoization, static analysis, program approximation by
neural networks etc. Moreover, in equational logic programming, local variables
cause problems since, in their presence, narrowing may become incomplete. In
[12], some transformations of definite (equational) logic programs into lvf ones
are presented. Unfortunately, these methods do not preserve failure.

It is well known that every computable function can be computed by a definite
logic program [3, 24]. Besides, the program built in [24] is an lvf definite program.
Therefore, from the theoretical point of view, the function that is computed by

P.M. Hill (Ed.): LOPSTR 2005, LNCS 3901, pp. 61–79, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



62 J. Álvez and P. Lucio

any given normal logic program (according to the Clark-Kunen semantics) can
also be computed by an lvf definite program (in PROLOG). The question is how
to automatically generate an lvf program from any given program with local
variables. In particular, the lvf program given in [24] simulates the computation
of a universal Turing machine over the Turing machine that computes the recur-
sive function. This is not the program that we try to generate by transformation.
Besides, each lvf normal program can be transformed into a definite one (see,
for instance, [5]). Hence, the automatic removing of local variables from normal
programs is a plausible and encouraging goal.

In this paper, we present an algorithm for eliminating the local variables
from normal logic programs while preserving the Clark-Kunen semantics. This
method is applicable, in particular, to the class of well-moded logic programs
([9, 10, 19]). We explain the algorithm, prove its correctness and give illustrative
examples.

Outline of the paper. In the next section, we fix notation and terminology. In Sec-
tion 3, we present a preliminary adjustment of the variable occurrences. Section
4 is devoted to partition the arguments of literals depending on the local vari-
ables, called mode, and to the notion of tail recursion w.r.t. a mode. In Section
5, we explain how to eliminate the local variables of a literal and the necessary
conditions for doing this. The transformation to tail recursion w.r.t. a mode is
shown in Section 6. In Section 7, we discuss the algorithm and its termination.
Finally, we summarize conclusions and briefly discuss related work.

2 Preliminaries

We assume that the reader is familiar with the basic concepts and notation of
logic programming, see e.g. [4]. In this section, we recall some basic terminology
and introduce some notational conventions used throughout the paper.

A bar is used to denote tuples, or finite sequences, of objects. For example,
x denotes an n-tuple of variables x1, . . . , xn. Throughout the paper, tuples of
variables are assumed to be pairwise distinct. As a consequence, we treat them
as sets and use the constant ∅ and the operators � (set difference), ∪ and ∩ for
tuples of variables with their usual meaning over sets. However, tuples of terms
and tuples of literals may have repeated elements. In such cases, concatenation
of tuples is denoted by the infix operator · and 〈 〉 stands for the empty tuple.

In clauses, we split the variables into global and local. A variable is local in a
clause if it occurs in its body but not in its head. Otherwise, it is global. For α
which is a clause —or any syntactic object inside a clause like atom, term, etc—
we denote by LVar(α) (GVar(α)) the set of local (global) variables in α. An lvf
clause/program is a clause/program free of local variables.

A literal is either an atom p(t) (positive literal) or a negated atom ¬p(t)
(negative literal), where p and ¬p are the predicate (symbol) of the literal and t
is a tuple of terms. We usually denote literals by L(t), M(t), N(t), . . . and L,
M , N , . . . are used to denote the predicate of a literal. In a literal, when we do



An Algorithm for Local Variable Elimination in NLPs 63

not need to specify the arguments, we simply omit the tuple of terms, and then
L, M , N , . . . denote a literal. Throughout the paper, the context always makes
it clear whether a capital letter stands for a literal or a predicate symbol.

Our program transformations preserve the Clark-Kunen semantics of normal
programs, which is given by Clark’s program completion [8] interpreted in three-
valued logic [13]. Note that the logical Clark-Kunen semantics is independent of
the order in which the literals appear in the clause bodies.

Given a normal program P and a predicate symbol p, DefP (p) is the set of all
clauses from P whose head literal begins with p. From Clark’s completion, we
have that ¬p(x) ↔ ¬ϕ where ϕ is the disjunction of the body clauses, which are
existentially quantified on its local variables. If DefP (p) has no local variables,
then ¬p(x) ↔ ¬ϕ can be easily reduced to a set of clauses that have a normal
body and a negative head.1 In this case, we say that this is a normal definition
called DefP (¬p). Otherwise, the universal quantification in clauses with head
¬p(x) can not be avoided and we say that DefP (¬p) is a complex definition. In
our transformations, only normal definitions are handled. Complex definitions
are delayed until they become normal or, otherwise, they are delayed forever.

We make use of the fold/unfold transformation system described in [17] (see
also [15]) where equivalence w.r.t. the Clark-Kunen semantics for definite pro-
grams is ensured by forbidding unfolding on direct recursion and requiring that
a clause C should be folded with another clause, different from C, taken from the
current program. Besides, this result can be extended to normal programs with
the proviso that only normal (not complex) definitions of negated predicates are
used. However, the fold/unfold technique is not powerful enough to prove some
of our results and we complement it with direct induction on the bottom-up
computation of the Clark-Kunen semantics.

Given a program P and two predicates L and M , we say that M directly
depends on L if L occurs in DefP (M). By the reflexive transitive closure of
this relation, we obtain the set DpdP (L) of all predicates on which L depends.
Besides, we define the set of all mutually recursive predicates with L by:

MRP (L) = {M |M ∈ DpdP (L) and L ∈ DpdP (M)}.

The induced equivalence relation —given by (L, M) ∈ R ⇐⇒ L ∈ MRP (M)—
partitions the set of all predicates into a finite number of equivalence classes.
Classes are MRP (L) where L is the class representative predicate. Then, the set
consisting of all the equivalence classes (or factor set) can be partially ordered
by the following relation:

MRP (L) � MRP (M) ⇐⇒ There exists N ∈ MRP (L) and Q ∈ MRP (M)
such that N ∈ DpdP (Q).

Moreover, given a program P , its set of mutually recursive classes does not
contain any infinite decreasing chain with respect to �. That is, � is a well-
founded order. For technical reasons, we need to distinguish the body literals
1 Of course, disequality is needed.



64 J. Álvez and P. Lucio

that are mutually recursive with the clause head. Hence, when convenient, a
clause will be written in the following Dpd-form:

H � L
1
, K1, L

2
, . . . , L

n
, Kn, L

n+1

to denote that Ki ∈ MRP (H) for each 1 ≤ i ≤ n and M �∈ MRP (H) for each
M ∈ L

i
and each 1 ≤ i ≤ n + 1. Note that n = 0 when no body literal belongs

to MRP (H). Besides, every L
i
could be an empty tuple.

In what follows, we assume a program, always called P , that is being trans-
formed into an lvf program. We would like to emphasize that, although our
method chooses some ordering on the clause bodies and the target programs
depend on that ordering, we always preserve the Clark-Kunen semantics.

3 Local-Regulation

Local-regulation (LR, for short) is a preliminary treatment of the variable occur-
rences in the clause bodies. Roughly speaking, it is an adjustment for enabling
local variable elimination. First, we define some syntactic conditions, called term-
apartness, and show that it can be achieved by program transformation.

Definition 1. Let L(t) be an n-ary literal in a given clause H � M, L(t), N
and x ⊆ Var(L(t)). The variables x are term-apart in L(t) iff for every 1 ≤ i ≤ n
(at least) one of the following two conditions holds:

(a) Var(ti) ∩ x ∩ Var(M) = ∅
(b) Var(ti) ∩ x ∩ Var(N) = ∅. ��

For example, given the clause h(x) � p(x), q(x, f(x, y), y), ¬ h(y), the vari-
ables (x, y) are not term-apart in q(x, f(x, y), y) due to the term f(x, y) in the
second argument, but each variable individually is term-apart in that literal.
The intuition behind term-apartness is that it allows us to partition the terms t
of a literal L(t) in two tuples t1 and t2 such that the variables that occur in t1
(t2) only occur in the left-hand side literals M (right-hand side literals N). This
partition facilitates the dataflow analysis of the clause.

Lemma 1. Every normal program P can be transformed into a Clark-Kunen
equivalent normal program P ′ such that all its variables are term-apart in the
literals occurring in P ′.

Proof. Let x ⊆ Var(L(t)) in a clause C = H � M, L(t), N ∈ P such that
w = Var(ti) ∩ x ∩ Var(M) �= ∅ and Var(ti) ∩ x ∩ Var(N) �= ∅ for some i. We
define a new predicate p by D = p(z · w · w) � L(z) and substitute the clause
C′ = H � M, p(t′ ·w ·w′), N [w′/w] for C, where w′ is a tuple of fresh variables
and t

′ is obtained by replacing ti with ti[w′/w] in t. In the resulting program,
D is an lvf clause since only a literal occurs in its body and, besides, we have
that Var(t′i) ∩ x ∩ Var(M) = ∅ in the clause C′. Furthermore, it is easy to see



An Algorithm for Local Variable Elimination in NLPs 65

that the new literal p(t′ · w · w′) in C′ will not be affected by any subsequent
transformation. After this process, equivalence is preserved since we obtain the
program P by unfolding the new literal p(t′ ·w ·w′) in C′ with the clause D. ��

Now, we formulate the condition of local-regularity on clauses and extend it to
programs in an obvious way.

Definition 2. A clause C:

H � L
1
(r1), K1(s1), L

2
(r2), . . . , L

n
(rn), Kn(sn), L

n+1
(rn+1)

in Dpd-form is local-regular iff n = 0 or it satisfies the following two conditions:

(a) LVar(Ki(si)) are term-apart in Ki(si) for every 1 ≤ i ≤ n
(b) every local variable occurs in si−1 · ri · si for some 1 ≤ i ≤ n + 1 and does

not occur anywhere in the clause (by convention, s0 = sn+1 = 〈 〉).

A program P is local-regular iff every clause C ∈ P is local-regular. ��

Next, we show a method to transform any program into a local-regular one.

Lemma 2. Every normal program P can be transformed into a Clark-Kunen
equivalent local-regular normal program P ′.

Proof. Due to Lemma 1, we can always transform P into an equivalent program
that satisfies the first condition. Therefore, we only focus on the second condition.
Let C = H � L

1
(r1), K1(s1), . . . , Kn(sn), L

n+1
(rn+1) ∈ P be a clause in

Dpd-form such that the leftmost occurrence of a local variable y that violates the
second condition is either in Ki−1(si−1) for 2 ≤ i ≤ n or in L

i
(ri) for 1 ≤ i ≤ n

and let C be rewritten as H � M, L
i
(ri), Ki(si), N . Then, we replace C with:

C′ = H � M, L
i
(ri), pi(si · y · y′), N [y′/y]

where y′ is a new local variable and pi is a new predicate defined by the clause
D = pi(z · x · x) � Ki(z). Now, y satisfies the second condition since it exactly
occurs in the tuple of literals Ki−1(si−1) ·Li

(ri) ·pi(si ·y ·y′) in C′. The iteration
of this process ends because either the number of local variables that violate
the condition decreases (that is, y′ satisfies it) or y′ occurs closer to the end
of the clause body in C′ than y in C: the leftmost occurrence of y is either in
Ki−1(si−1) or in L

i
(ri) in the clause C whereas the leftmost occurrence of y′ is in

pi(si ·y ·y′) in the clause C′. Also, the new predicate pi is mutually recursive to H
and, therefore, the clause C′ is in Dpd-form. Besides, it is easy to see that the first
condition of local regulation is always preserved by the above transformation.
We have that the resulting program P ′ is equivalent to P because we obtain P
by unfolding the new literals in P ′. ��

The following example describes the transformation of a one-clause program into
a local-regular program consisting of three clauses and using two fresh predicates.



66 J. Álvez and P. Lucio

Example 1. Let us consider the following clause of some program P :

E1.1 : p(f(x1, x2)) � q1(f(x2, w1)), p1(g(w1, w2)),
q2(f(w2, w1)), p2(g(w3, x1)), q3(f(w2, w3))

such that MRP (p) = {p, p1, p2}. The clause is not local-regular because the
local variable w1 violates both conditions of Def. 2 and w2 violates the second
one. Considering w1, we define a new predicate p′1 and replace E1.1 with the
following clauses:

E1.2 : p′1(z, w, w) � p1(z)
E1.3 : p(f(x1, x2)) � q1(f(x2, w1)), p′1(g(w′

1, w2), w1, w
′
1),

q2(f(w2, w
′
1)), p2(g(w3, x1)), q3(f(w2, w3))

Now, w1 and w′
1 violate neither the first condition nor the second one. With re-

gard to w2, its leftmost occurrence is in the literal p′1(g(w′
1, w2), w1, w

′
1). There-

fore, we define a new predicate p′2 and substitute the following clauses for E1.3:

E1.4 : p′2(z, w, w) � p2(z)
E1.5 : p(f(x1, x2)) � q1(f(x2, w1)), p′1(g(w′

1, w2), w1, w
′
1),

q2(f(w2, w
′
1)), p′2(g(w3, x1), w2, w

′
2), q3(f(w′

2, w3))

All the resulting clauses are local-regular. Thus, the source and target programs
are shown to be equivalent by unfolding the literals of predicates p′1 and p′2. ��

4 Input/Output Modes for Literals

Input/output modes were introduced in [16] and further extensively studied
from many points of view and for many applications. In the classical view, the
mode of a predicate indicates how its arguments will be used in the sense of
identifying arguments which belong to the input and to the output. In this paper,
in order to eliminate the local variable y, it might be necessary to consider as
output the second argument in p(x1, y) and as input the second argument in
p(x2, y). However, for the sake of clarity, we allow to assign a unique mode
to each predicate. Hence, instead of assigning multiple modes to predicates, we
consider a different but equivalent program where the predicates are conveniently
renamed and different copies of the same predicate are provided, one for each
different mode.

Definition 3. A mode for an n-ary predicate L, denoted by m : L, is an n-tuple
m ∈ {in, out}n, where the position i (1 ≤ i ≤ n) such that mi = in (mi = out) is
considered as an input (output) position. ��

Throughout this paper, we will use the following notation:

Remark 1. Given a mode m for a predicate L and a literal L(t), the expression
tI

m
	 tO means the unique partition of t into the order-preserving subsequences

consisting of the input (tI) and output (tO) arguments of L(t) according to m.
Besides, the expression L(tI m

	 tO) is called the IO-form of L(t), which implicitly



An Algorithm for Local Variable Elimination in NLPs 67

represents m in L(t). Whenever the upper mode name m is irrelevant, we simply
omit it and write L(tI 	 tO). If (all or some of) the literals of a clause are in
IO-form, then we say that the clause is in IO-form. From now on, the literals of
any clause (in particular, in Dpd-form) can be written in IO-form. ��

Definition 4. Let C be a clause:

H � M, L(t), K1(u1), . . . , Kn(un), N

where:

– y ⊆ Var(L(t)),
– y ∩ Var(N) = ∅, and
– y ∩ Var(Ki(ui)) �= ∅ for each 1 ≤ i ≤ n

such that the variables y are term-apart in L(t). Then, the collection of modes
{m : L, m1 : K1, m2 : K2, . . . , mn : Kn}, denoted by VarMode(C, L(t), y), is
defined by:

(a) mi = in if Var(ti) ∩ y ⊆ Var(M) and mi = out otherwise.
(b) For each 1 ≤ j ≤ n: mj

i = in if Var(uj
i )∩ y �= ∅ and mj

i = out otherwise. ��

Note that, by the term-apartness of y, the variables in Var(tI) ∩ y do not occur
in K1(u1), . . . , Kn(un).

Example 2. Let C be the following clause in a program P :

p(x1, x2) � q(f(x1, y1), y1), r(y1, f(x2, y2)), r(x2, f(y2, x2)), q(x1, x1).

First, we need to rename the second literal r(x2, f(y2, x2)), which is replaced
with r′(x2, f(y2, x2)), and provide a copy of DefP (r) for the definition of the
new predicate r′:

C′ = p(x1, x2) � q(f(x1, y1), y1), r(y1, f(x2, y2)), r′(x2, f(y2, x2)), q(x1, x1).

Then, the set of modes VarMode(C′, r(y1, f(x2, y2)), (y1, y2)) is:

{(in, out) : r, (out, in) : r′}

which yields the following IO-form of C′:

p(x1, x2) � q(f(x1, y1), y1), r(y1 	 f(x2, y2)), r′(f(y2, x2) 	 x2), q(x1, x1).

By contrast, VarMode(C′, r(y1, f(x2, y1)), x2) gives:

p(x1, x2) � q(f(x1, y1), y1), r(y1 	 f(x2, y2)), r′(x2, f(y2, x2) 	 〈 〉), q(x1, x1).

Note that we have not assigned a mode to the literals on q since r is not mutually
recursive with the predicate q. ��



68 J. Álvez and P. Lucio

Our intention is to eliminate the local variables that occur in the terms tO of
a given L(tI m

	 tO). For (in, out) : r (see Example 2), that variable is y2. For
this purpose, we must associate modes with the clauses in the definition of L
according to m. That is, we first fix m as the mode for the head literal of each
clause C in DefP (L). Then, taking into account the input/output partition of
the head literal and the local variables of C, we associate a mode with every
body literal of C that is mutually recursive with L.

Definition 5. Let m be the mode assigned to a predicate L and C be the following
normal local-regular2 clause in Dpd-form:

L(uI
m
	 uO) � L

1
(r1), K1(s1), L

2
(r2), . . . , L

n
(rn), Kn(sn), L

n+1
(rn+1)

where each Ki(si) is an ni-ary literal. Then, the mode for the clause C, denoted
by ClauseMode(C, m), is given by the set of modes {m : L, m1 : K1, . . . , mn : Kn},
where each mi is defined as follows:

mi
j =

⎧⎪⎨
⎪⎩
in if LVar(si

j) ∩ LVar(ri−1) �= ∅ or
LVar(si

j) = ∅ and (Var(si
j) ∩ Var(uI) �= ∅ or Var(si

j) ∩ Var(uO) = ∅)
out otherwise

for every 1 ≤ j ≤ ni. Besides, assuming that DefP (L) = {C1, . . . , Ck}, the
mode for the definition of L, denoted by DefMode(P, L, m), is given by the set of
clause modes {ClauseMode(C1, m), . . . , ClauseMode(Ck, m)}. ��

Example 3. Let P be the following program:

E3.1 : h(x) � p(x, y), q(y), r(x)
E3.2 : p(a, b)
E3.3 : p(f(v), z) � h(v), r(z)

such that MRP (p) = {h, p}. Then, the set of modes VarMode(E3.1, p(x, y), y)
yields the following IO-form for the clause E3.1:

h(x) � p(x 	 y), q(y 	 〈 〉), r(x)

Besides, since (in, out) is the mode for the predicate p, the set of clause modes
DefMode(P, p, (in, out)) yields the following clauses:

p(a 	 b)
p(f(v) 	 z) � h(v 	 〈 〉), r(z)

where the mode (in) is assigned to the predicate h. Finally, the set of clause
modes DefMode(P, h, (in)) gives the clause:

h(x 	 〈 〉) � p(x 	 y), q(y 	 〈 〉), r(x)

Note that, in this example, we have assigned a unique mode to the predicates h
and p without renaming. ��
2 By Lemma 2, we can assume local-regularity.



An Algorithm for Local Variable Elimination in NLPs 69

Now, starting with a mode m assigned to a predicate L, we collect the modes
that are assigned to all the predicates that are mutually recursive with L.

Definition 6. Let m be the mode assigned to a predicate L in a program P . The
relation ≺ is defined by:

m : L ≺ m′ : M ⇐⇒ m′ : M ∈ DefMode(P, L, m).

Besides, the mode for the predicates that are mutually recursive with L, denoted
by ModeMR(P, L, m), is given by the least set of modes that contains the singleton
{m : L} and is upwards closed with respect to the relation ≺. ��

Example 4. In the program of Example 3, the set of modes ModeMR(P, p, (in,
out)) is given by:

{(in, out) : p, (in) : h }
Note that, since we assign a unique mode to each predicate, we have that
ModeMR(P, p, (in, out)) = ModeMR(P, h, (in)). ��

Next, we present the notion of tail recursion, which is relative to a mode.

Definition 7. The definition of a predicate L in a program P is tail recursive
w.r.t. a mode m iff the following two conditions hold:

(a) MRP (L) = {L}
(b) the set of clause modes DefMode(P, L, m) yields clauses of the following two

forms:

(1 ) L(rI m
	 rO) � E

(2 ) L(sI m
	 z) � F , L(s′I

m
	 z)

where N �∈ MRP (L) for each N ∈ E ·F and z is a tuple of fresh variables. ��

This notion of tail recursion is more restrictive than the classical one. Intuitively
stated, it means that, besides the fact that only the rightmost literal is head-
dependent, all the recursive calls return exactly the same value.

5 Elimination of the Local Variables of a Literal

When DefP (L) is tail recursive w.r.t. a mode, we are able to eliminate the local
variables that occur in the output arguments of the selected literal L(t). This is
done by substituting a set of clauses, called LVFP (C, L(t)), for the clause C.

Definition 8. Let VarMode(C, L(t), y) yield the following IO-form for C:

C = H � M, L(tI m
	 tO), K1(u1

I
m1

	 u1
O), . . . , Kn(un

I
mn

	 un
O ), N

where y = LVar(L(t)) are term-apart in L(t) and y ∩ Var(N ) = ∅. If DefP (L) is
tail recursive w.r.t. m, then LVFP (C, L(t)) consists of the following clauses:



70 J. Álvez and P. Lucio

(a) One single clause of the form:

H � M, p(tI, wI 	 uO, wO), N

where uO = u1
O ∪ . . . ∪ un

O .
(b) For each non-recursive clause L(rI m

	 rO) � E ∈ DefP (L), a clause:

p(rIσ, wIσ 	 v, wOσ) � Eσ, K1(u1
Iσ

m1

	 v1), . . . , Kn(un
Iσ mn

	 vn)

where σ = mgu(rO, tO) and v = v1 ∪ . . . ∪ vn.
(c) For each recursive clause L(sI m

	 z) � F , L(s′I
m
	 z) ∈ DefP (L), a clause:

p(sI, wI 	 v, wO) � F, p(s′I, wI 	 v, wO)

where p is a fresh predicate symbol, v is a fresh tuple of variables of the size of
uO, wI = GVar(tO) � GVar(tI · uO) and wO = GVar(uI) � GVar(tI · uO). ��

In the above definition, wI and wO are used to keep the links between literals
through global variables. Note that, in the original clause C, the exact variables
y occur in tO and uj

I for 1 ≤ j ≤ n, but do not occur in LVFP (C, L(t)). Hence,
y has been eliminated from C. Some occurrences of local variables could remain
in the clauses of the form (b), but they are in literals that do not depend on the
head. We will return to this matter for a discussion about termination.

Theorem 1. Let LVFP (C, L(t)), L(t) and the clause C be as in Definition 8.
The programs P and P ′ = P �{C}∪LVFP (C, L(t)) are Clark-Kunen equivalent.

Proof. Let us assume that VarMode(C, L(t), y) yields the following IO-form:

C : H � M, L(tI m
	 tO), K1(u1

I
m1

	 u1
O), . . . , Kn(un

I
mn

	 un
O ), N

where y = LVar(L(t)). A program P0 is obtained by introducing the new predi-
cate p in P . In P0, p is defined by the single clause:

D : p(x, wI 	 z, wO) � L(x m
	 tO), K1(u1

Iσ
m1

	 z1), . . . , Kn(un
Iσ mn

	 zn)

where x, z1, . . . , zn are tuples of fresh variables, the sets wI and wO are
obtained as in Definition 8 and z = z1 ∪ . . . ∪ zn. The programs P and P0 are
trivially equivalent. Next, we obtain P1 from P0 by folding C using D:

C′ : H � M, p(tI, wI 	 uO, wO), N

where uO = u1
O ∪ . . . ∪ un

O . Then, the program P2 is obtained by unfolding the
literal L(x 	 tO) in the clause D. Since DefP (L) (and therefore, DefP1(L)) is tail
recursive w.r.t. m, it consists of clauses of the following two forms:

T 1.1 : L(rI m
	 rO) � E

T 1.2 : L(sI m
	 z) � F , L(s′I

m
	 z)

and, hence, after the unfolding step, we get clauses of the form:

T 1.3 : p(rIσ, wIσ 	 z, wOσ) � Eσ, K1(u1
Iσ

m1

	 z1), . . . , Kn(un
Iσ mn

	 zn)
T 1.4 : p(sI, wI 	 z, wO) � F , L(s′I

m
	 tO), K1(u1

Iσ
m1

	 z1), . . . , Kn(un
Iσ mn

	 zn)



An Algorithm for Local Variable Elimination in NLPs 71

where σ = mgu(rO, tO). The programs P2 and P ′ are syntactically equal except
for the clauses T 1.4, where L(s′I

m
	 tO), K1(u1

Iσ
m1

	 z1), . . . , Kn(un
Iσ mn

	 zn)
correspond with the literal p(s′I, wI 	 z, wO) in the program P ′. It is easy (but
tedious) to prove that P2 and P ′ are equivalent using induction on bottom-up
computation of the Clark-Kunen semantics. The interested reader may find the
details in [1]. Therefore, the programs P and P ′ are also equivalent. ��

Example 5. Let P be the following program:

E5.1 : q(x1, x2) � member(y, x1), ¬ member(y, x2)
E5.2 : member(x, [x| ])
E5.3 : member(x1, [ |x2]) � member(x1, x2)

In order to eliminate the local variable y, we first obtain the set of modes
VarMode(E5.1, member(y, x1), y), that yields the following IO-form of E5.1:

q(x1, x2) � member(x1 	 y), ¬ member(y 	 x2)

where the mode (out, in) is assigned to member. Besides, the set of clause modes
DefMode(P, member, (out, in)) gives the following clauses:

member([x| ] 	 x)
member([ |x2] 	 x1) � member(x2 	 x1)

Since DefP (member) is tail recursive w.r.t. the mode (out, in), then the set of
clauses LVFP (E5.1, member(y, x1)) is a compound of:

E5.4 : q(x1, x2) � p(x1 	 x2)
E5.5 : p([x| ] 	 z) � ¬ member(x 	 z)
E5.6 : p([ |x] 	 z) � p(x 	 z) ��

6 Tail Recursive Transformation

We use the well known technique of the call stack for transforming recursion
into tail recursion. The method in [21] also uses the call stack to convert a def-
inite program into a continuation passing style program which, in particular, is
a binary program (clauses have at most one literal in the body). We perform a
similar, but simpler, treatment since our target program is not required to be
binary. For the sake of readability, consider that the clauses to be transformed
have (at most) two head-dependent literals in the body (see (1) below). General-
ization to n literals is not difficult but unnecessarily complicates the description
of the transformation we explain below.

A given DefP (L), that is not tail recursive with respect to a mode m, is
transformed into a new definition formed by the single clause:

L(x m
	 z) � q(x, [cL] 	 z).

where q is a fresh predicate and cL is a constant that stands for L. This new
definition is obviously tail recursive w.r.t. any mode (in particular w.r.t. m).



72 J. Álvez and P. Lucio

Then, we use the original definition of L for providing a tail recursive definition
of q w.r.t. the mode in q(x, [cL] 	 z), which is the extension of m by adding an
input position. The definition of q is given by:

– the single clause q(z, [ ] 	 z),
– plus, for each element m′ : K ∈ ModeMR(P, L, m) and each clause from

DefP (K) (in Dpd-form):

K(tI m′
	 tO) � L

1
, K1(s1

I
m1

	 s1
O), L

2
, K2(s2

I
m2

	 s2
O), L

3
(1)

the following four clauses:

(i) q(tI, [cK |S] 	 z) � q(tI, [w1, cC
1 , w2, cC

2 , wC , cC |S] 	 z)
(ii) q(tI, [w1, cC

1 |S] 	 z) � L
1
, q(s1

I, [cK1 |S] 	 z)
(iii) q(s1

O, [w
2, cC

2 |S] 	 z) � L
2
, q(s2

I, [cK2 |S] 	 z)
(iv) q(s2

O, [w
C , cC |S] 	 z) � L

3
, q(tO, S 	 z)

where z is a tuple of fresh variables, w1 = GVar(L
1 ·s1

I), w2 = GVar(s1
O ·L

2 ·s2
I)

and wC = GVar(s2
O · L

3 · tO) ∩ (w1 ∪w2).

The sets of variables in the stack are used to keep the links between literals
through global variables. As defined, these sets are not minimal. A more so-
phisticated analysis would produce smaller sets of variables. Note that the fresh
predicate q is used with tuples of terms of different sizes in the input arguments
and, therefore, we are really defining several predicates, one for each arity. This
is not a minor difference if we consider the dependences of predicates, especially
in Definition 8. By contrast, the size of the tuple of fresh variables z is equal in
all the clauses and it coincides with the number of output positions in m.

Example 6. Let P be the following program:

E6.1 : k(a m
	 b)

E6.2 : k(f(x1) m
	 f(x2)) � q(x1

m
	 x2)

E6.3 : q(x1
m
	 x2) � ¬ h(x1, x2)

E6.4 : q(f(x1) m
	 f(x2))) � k(x1

m
	 y), q(g(y, x1) m

	 x2)

where ModeMR(P, k, m) = {m : k, m : q} for m = (in, out). Since DefP (k) is not tail
recursive w.r.t. m, a tail recursive definition of k w.r.t. m consists of the following
clauses. First, the initial clauses:

E6.5 : k(x m
	 z) � p(x, [ck] 	 z)

E6.6 : p(z, [ ] 	 z)

where the constant ck stands for the predicate k. Since E6.1 is non-recursive,
the above clauses (ii) and (iii) are not necessary (c1 corresponds with E6.1):

E6.7 : p(a, [ck|S] 	 z) � p(a, [c1|S] 	 z)
E6.8 : p(a, [c1|S] 	 z) � p(b, S 	 z)



An Algorithm for Local Variable Elimination in NLPs 73

In the clause E6.2, there is one recursive literal. Hence, (iii) is not necessary:

E6.9 : p(f(x1), [ck|S] 	 z) � p(f(x1), [c2
1, c

2|S] 	 z)
E6.10 : p(f(x1), [c2

1|S] 	 z) � p(x1, [cq|S] 	 z)
E6.11 : p(x2, [c2|S] 	 z) � p(f(x2), S 	 z)

where c2 stands for the clause E6.2, c2
1 for the literal q(x1 	 x2) and cq for the

predicate q. The clause E6.3 is non-recursive (c3 corresponds to E6.3), then:

E6.12 : p(x1, [cq|S] 	 z) � p(x1, [c3|S] 	 z)
E6.13 : p(x1, [c3|S] 	 z) � ¬ h(x1, y), p(y, S 	 z)

Finally, the clause E6.4 has two recursive literals, where c4, c4
1 and c4

2 respectively
stand for the clause itself and the literals k(x1 	 x2) and q(g(y, x1) 	 x2):

E6.14 : p(f(x1), [cq|S] 	 z) � p(f(x1), [c4
1, x1, c

4
2, c

4|S] 	 z)
E6.15 : p(f(x1), [c4

1|S] 	 z) � p(x1, [ck|S] 	 z)
E6.16 : p(f(x), [x1, c

4
2|S] 	 z) � p(g(x, x1), [cq|S] 	 z)

E6.17 : p(x2, [c4|S] 	 z) � p(f(x2), S 	 z) ��

It is easy to see that, in the above example, the transformed program uses
the stack to simulate the computation of the original program for any goal. In
general, the transformation works similarly for clauses with any arbitrary number
of head-dependent body literals and it preserves the Clark-Kunen equivalence.
The proof of this result is omitted for brevity and it can be found in [1].

Theorem 2. Let m be a mode for a predicate L in a program P . Then, the
definition of L can be transformed into a Clark-Kunen equivalent definition that
is tail recursive w.r.t. m. ��

7 An Algorithm for Elimination of Local Variables

Now, we present our algorithm —see Figure 1— for eliminating local variables.
In previous sections, we have shown the basic transformations that our algorithm
performs. These are: local-regulation (LR), elimination of a tuple of local vari-
ables (LVF) and tail-recursive transformation (TR). These three basic operations
have different effects on the set of local variable occurrences in the transformed
program. Sometimes, new local variables could arise in the new clauses and, at
the same time, other local variables are erased. In this section, we show that it
is possible to give decidable conditions that guarantee termination. Such condi-
tions are concerned with the notion of a literal candidate, which we will make
precise after a brief introduction of the algorithm itself.

The algorithm outlined in Figure 1 first collects all the literals that contain
some local variables in the set Lit(P ). Then, until Lit(P ) becomes empty, we select
any literal L(t) from that set. Let assume that L(t) occurs in a clause C such
that m is the mode assigned to the predicate L by VarMode(C, L(t), LVar(L(t)))
and H is the literal in the clause head. On the one hand, if the selected literal
is not a candidate (line 5), then we simply delete it from Lit(P ) and proceed



74 J. Álvez and P. Lucio

to the next iteration. On the other hand, if L(t) is a candidate, then there
are two main cases. If DefP (L) is tail recursive w.r.t. m (line 7), we substitute
LVFP (C, L(t)) for C. Besides, we delete from Lit(P ) all the literals that occur in
C and add to Lit(P ) all the literals from LVFP (C, L(t)) that contain some local
variables. Otherwise, if the definition of L is not tail recursive w.r.t. m (line 12),
we transform DefP (L) into tail recursive w.r.t. that mode. Besides, we delete
from Lit(P ) the literals that occur in DefP (L) and add to Lit(P ) the literals that
contain some local variables in the new clauses. In the former case (line 7), we
directly eliminate the subset of local variables from the clause C. In the latter
case (line 12), the definition of L is adapted for fulfilling the condition of the
first case. Note that, in the last case (line 12), the clause C is removed from P
only if L depends on H , because DefP (L) = DefP (H). Therefore, we have to
select a different candidate in the next step. Otherwise, L(t) can be selected as
a candidate in the next step and the subset of local variables will be eliminated.

1 collect in Lit(P ) all the literals that contain some local variables

2 while Lit(P ) �= ∅ loop
3 select a literal L(t) in a clause C = H � M, L(t), N

4 let m : L ∈ VarMode(C, L(t), LVar(L(t)))

5 if L is not a candicate then
6 delete L from Lit(P )

7 elsif DefP (L) is tail recursive w.r.t. m then
8 substitute LVFP (C, L) for the clause C in P

9 delete from Lit(P ) the literals in C

10 add to Lit(P ) the literals in LVFP (C, L) that contain

11 some local variables

12 else
13 transform DefP (L) into tail recursive w.r.t. m
14 delete from Lit(P ) the literals in DefP (L)

15 add to DefP (L) the literals in the new clauses that

16 contain some local variables

17 end if
18 end loop

Fig. 1. An Algorithm for Elimination of Local Variables

The algorithm in Figure 1 terminates when there is no candidate, although
the resulting program may not necessarily be lvf. With regard to termination,
the transformation LR introduces new local variables but, since local-regularity
is preserved by the other two transformations, LR is applied only finitely many
times. The transformation LVF does not introduce new local variables, but the
local variables y to be removed could be only partially eliminated in some cases.
In particular, a clause of the form (b) of Definition 8 could contain some vari-
ables from y. However, they necessarily occur in literals that do not depend on
the clause head. This fact ensures termination because the set of all mutually



An Algorithm for Local Variable Elimination in NLPs 75

recursive components of a program is well-foundedly ordered w.r.t. predicate de-
pendencies. The transformation TR, explained in Section 6, could introduce new
local variables, which could lead to non-termination problems through clauses
(i) and (iv) (see Section 6). The problem arises when new local variables ex-
actly occur in literals which depend on the clause head because, in that case,
the resulting definition is never tail recursive w.r.t that is given by VarMode with
respect to the new local variables. Therefore, we would transform the definition
of a predicate into tail recursive w.r.t. the corresponding mode infinitely many
times. On the one hand, since clauses (i) are binary, they must be lvf in order to
avoid that problem. On the other hand, let us illustrate the problem of clauses
(iv) by the following example.

Example 7. Consider the following program P :

E7.1 : perfectsq(v) � mult(y, y, v)
E7.2 : mult(0, x, 0)
E7.3 : mult(s(x1), x2, x3) � mult(x1, x2, y), sum(x2, y, x3)

To eliminate the local variable y in the first clause, VarMode(E7.1, mult(y, y, v), y)
assigns the mode (out, out, in) to the predicate mult. Since DefP (mult) is not
tail recursive w.r.t. (out, out, in), we transform the definition of the predicate
mult as explained in Section 6. Then, the clause (iv) obtained from E7.2 is:

q(0, [cE7.2|S] 	 z1, z2) � q(0, y′, S 	 z1, z2)

where y′ is a new local variable that occurs in a literal that depends on the clause
head. However, if the clause E7.2 is replaced with the following two clauses:

E7.4 : mult(0, 0, 0)
E7.5 : mult(0, s(x), 0) � mult(0, x, 0)

then, the respective clauses (iv) are lvf (therefore, not problematic):

q(0, [cE7.4|S] 	 z1, z2) � q(0, 0, S 	 z1, z2)

q(0, x, [cE7.5|S] 	 z1, z2) � q(0, s(x), S 	 z1, z2)

Note that the programs P and P � {E7.2} ∪ {E7.4, E7.5} are not Clark-Kunen
equivalent. ��
In order to avoid the termination problem, we can establish syntactic conditions
to ensure that the clauses (i) are lvf and also that the new local variables of (iv)
occur in literals which do not depend on the head. This is a sufficient condition
for termination assuming that the literal selection rule (line 3 in Figure 1) is
fair, although the resulting program might be not lvf. This condition is formally
stated in the following definition.

Definition 9. Let P be a program and N(u) be a literal in a clause C such
that VarMode(C, N(u), LVar(N(u))) assigns the mode m to the predicate N and
uI 	 uO is the unique partition of the tuple of terms u w.r.t. m. Then, the literal
N(u) is called candidate iff:



76 J. Álvez and P. Lucio

(a) LVar(N(u)) are term-apart in N(u)
(b) DefP (K) is local-regular for every K ∈ MRP (N)
(c) LVar(uO) �= ∅
(d) for each element m′ : K ∈ ModeMR(P, N, m) and each clause in DefP (K) of

the form K(tI m′
	 tO) � L

1
, K1(s1

I 	 s1
O), . . . , L

n
, Kn(sn

I 	 sn
O ), L

n+13:
(d.1) GVar(L

1 · s1
I · s1

O · . . . · L
n · sn

I ) ⊆ GVar(tI)
(d.2) GVar(tO) ⊆ GVar(tI · L

n+1 · sn
O )

(e) DefP (K) is a normal definition for every K ∈ MRP (N) ��

The conditions (d.1) and (d.2) in the above definition respectively ensure that
the clauses (i) and (iv) are not problematic. Note that, in Example 7, the
literal mult(y, y, v) is not a candidate because (d.2) does not hold for E7.2 and
mode (out, out, in), since GVar(tO) = {x} and GVar(tI · L

n+1 · sn
O ) = ∅. On

the contrary, the clauses E7.4 and E7.5 avoid this problem, because the former
does not have any global variable, whereas for the latter GVar(tO) = {x} and
GVar(tI · L

n+1 · sn
O ) = {x}. Besides, the condition (e) ensures that, dealing with

normal logic programs, the transformations LVF and LR are applicable to the
involved definition. Note that the elimination of some local variables could turn
a non-candidate literal into a candidate one when its complex definition becomes
normal.

We have verified that the algorithm in Figure 1 successfully works for most
of the programs in Sterling and Shapiro [22] (about 35 definite programs and
6 normal programs). The interested reader may find them and their lvf version
in the URL: http://www.sc.ehu.es/jiwlucap/LVF.html. Outstanding exceptions
are the programs that use difference-lists. Let us give an example.

Example 8. Let P be the following program:

E8.1 : flatten(x1, x2) � flatten dl(x1, x2 \ [ ])
E8.2 : flatten dl([ ], x \ x)
E8.3 : flatten dl(x1, [x1|x2] \ x2) � constant(x1), x1 �= [ ]
E8.4 : flatten dl([x1|x2], x3 \ x4) � flatten dl(x1, x3 \ y),

f latten dl(x2, y \ x4)

that flattens a list of lists using difference-lists. The algorithm in Figure 1 cannot
eliminate the local variable y in the clause E8.4. In order to eliminate y, the
mode (in, out) : flatten dl is given by VarMode(E8.4, f latten dl(x1, x3 \ y), y).
However, the clause E8.2 does not hold the condition (d.2) in Definition 9 with
respect to this mode. ��

In spite of this drawback, our algorithm successfully eliminates all the local
variables from a wide subclass of normal logic programs. That is, many pograms
satisfy the conditions in Definition 9. In order to provide some more intuitition
on the Definition 9, we would like to point out that any well-moded program
([9, 10, 19]) satisfy it. Roughly speaking, in a well-moded program, each predicate

3 For technical reasons, we assume that s0
O is the tuple tI.



An Algorithm for Local Variable Elimination in NLPs 77

has assigned a unique mode such that the literals (in clause bodies) satisfy a
left-to-right producer-consumer relation. For mostly well-moded clauses, that
relation directly ensures the conditions (d.1) and (d.2) of Definition 9. Some
exceptions are due to the fact that we only assign modes to some predicates (the
ones that are mutually recursive with the predicate in the clause head). This
shortcoming can be avoided by requiring local-regulation (see Definition 2) in
the global variables as it is required for the local ones. Notice that, in Example 7,
the clauses E7.4 and E7.5 are well-moded. The first one is trivially well-moded
because its body is empty and all the terms in its head are ground. In the clause
E7.5, there is a well-moded producer-consumer relation since the literal in the
clause body produces the output variable x of the head. Notice also that, on the
contrary, the clause E7.2 cannot be well-moded because the output variable x is
neither produced by the clause body (it is empty), nor is it also an input variable.

8 Conclusions and Related Work

We have introduced an algorithm that removes local variables from normal pro-
grams while preserving Clark-Kunen semantics and show that our algorithm
eliminates all the local variables from a wide range of normal logic programs.
However, it is still an open problem to decide whether any normal (or, even,
definite) program can be transformed into an lvf one, despite the result of [24].

Since our transformation includes fresh symbols and new literals, a real im-
plementation should clean up the target program to prevent a hypothetical per-
formance deterioration. Superfluous literals can be removed by unfolding. Note
that unfolding in an lvf program preserves the lvf feature. Furthermore, we can
reduce the blow-up of new symbols and literals by keeping the original definition
of predicates in the program, although their tail recursive versions are used for
performing the local variable elimination.

The work most closely related to our own is [21], where a continuation passing
style (CPS, for short) transformation is introduced for definite programs. The
CPS conversion is also related to both the call stack technique and the notion
of mode. Moreover, the authors introduce the possibility of local variable elim-
ination through CPS conversion and give a sufficient condition for successful
elimination, called ground I/O condition, in a definite program. The ground I/O
condition of a clause depends on some (arbitrary) mode for every predicate oc-
curring in it. Anyway, there are marked differences in our approach and results.
First, we deterministically assign one mode to each literal taking into account
the local variables to be eliminated, whereas the transformation of [21] depends
on an arbitrary mode. Second, we only manage the clauses that belong to the
predicate definition (and the mutually recursive ones) of the selected literal. By
contrast, in the approach of [21], the definition of all the literals in the affected
clause are handled and all of them must satisfy the ground I/O condition.

The aim of [18] is to yield more efficient SLD-computations of definite pro-
grams by the elimination of redundant computations caused by the so-called
unnecessary variables. Local variables are a special kind of such unnecessary



78 J. Álvez and P. Lucio

variables, because that method also considers as unnecessary those variables that
occur more than once in the clause body (called multiple variables), even when
they occur in the head. Different strategies for guiding the application of un-
fold/fold transformations are presented in order to eliminate such unnecessary
variables. These strategies guarantee the complete elimination of unnecessary
variables for a syntactically characterized subclass of definite programs.

Other significant related work is [14], which introduces an algorithm, called
RAF, for eliminating redundant arguments from definite programs. Actually,
RAF is intended as a post-processing phase for program transformers, since
automatic transformation produces many redundant arguments. Usually, local
variables appear in redundant arguments. Hence, local variable elimination can
be performed through a combination of some program transformation method
(for instance, conjunctive partial deduction) and the RAF algorithm. This kind
of system is closer in spirit to [18] than our own method.

Acknowledgment. We would like to thank the anonymous referees for their
valuable comments, which aided in improving the quality of this paper and in
clarifying the presentation. This work was partially supported by the Spanish
Project TIN2004-079250-C03-03.

References

1. J. Álvez and P. Lucio. An algorithm for local variable elimination in normal logic
programs. Technical Report LSI/TR 10-2005, Basque Country University, 2005.

2. J. Álvez, P. Lucio, F. Orejas, E. Pasarella, and E. Pino. Constructive negation by
bottom-up computation of literal answers. In SAC ’04: Proceedings of the 2004
ACM symposium on Applied computing, pages 1468–1475, New York, NY, USA,
2004. ACM Press.

3. H. Andréka and I. Németi. The generalized completeness of Horn predicate-logic
as a programming language. Acta Cybern., 4:3–10, 1980.

4. K. R. Apt. Logic programming. In Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B), pages 493–574. Elsevier, 1990.

5. R. Barbuti, P. Mancarella, D. Pedreschi, and F. Turini. A transformational ap-
proach to negation in logic programming. J. Log. Program., 8(3):201–228, 1990.

6. P. Bruscoli, F. Levi, G. Levi, and M. C. Meo. Compilative constructive negation
in constraint logic programs. In CAAP ’94: Proceedings of the 19th International
Colloquium on Trees in Algebra and Programming, pages 52–67, London, UK, 1994.
Springer-Verlag.

7. D. Chan. An extension of constructive negation and its application in coroutining.
In NACLP, pages 477–493, 1989.

8. K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293–322, New York, 1978. Plenum Press.

9. P. Dembinski and J. Maluszynski. And-parallelism with intelligent backtracking
for annotated logic programs. In SLP, pages 29–38, 1985.

10. W. Drabent. Do logic programs resemble programs in conventional languages? In
SLP, pages 289–396, 1987.

11. W. Drabent. What is failure? an approach to constructive negation. Acta Inf.,
32(1):27–29, 1995.



An Algorithm for Local Variable Elimination in NLPs 79

12. M. Hanus. On extra variables in (equational) logic programming. In ICLP, pages
665–679, 1995.

13. K. Kunen. Negation in logic programming. J. Log. Program., 4(4):289–308, 1987.
14. M. Leuschel and M. H. Sørensen. Redundant argument filtering of logic programs.

In J. Gallagher, editor, Logic Program Synthesis and Transformation, Proceedings
of LoPSTr ’96, Stockholm, Sweden, Lecture Notes in Computer Science 1207, pages
83–103. Springer-Verlag, 1996.

15. M. J. Maher. Correctness of a logic program transformation system. Technical
Report RC 13496, IBM T.J. Watson Research Center, 1988.

16. C. S. Mellish. The automatic generation of mode declarations for prolog programs.
Technical Report 163, Dept. of Artificial Intelligence, University of Edinburgh,
Scotland, 1981.

17. A. Pettorossi and M. Proietti. Transformation of logic programs. In D. M. Gab-
bayand, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artifi-
cial Intelligence and Logic Programming, Vol. 5, pages 697–787. Oxford University
Press, 1998.

18. M. Proietti and A. Pettorossi. Unfolding - definition - folding, in this order, for
avoiding unnecessary variables in logic programs. Theor. Comput. Sci., 142(1):
89–124, 1995.

19. D. A. Rosenblueth. Chart parsers as proof procedures for fixed-mode logic pro-
grams. In FGCS, pages 1125–1132, 1992.

20. T. Sato and H. Tamaki. Transformational logic program synthesis. In FGCS, pages
195–201, 1984.

21. T. Sato and H. Tamaki. Existential continuation. New Generation Comput.,
6(4):421–438, 1989.

22. L. Sterling and E. Shapiro. The art of Prolog: advanced programming techniques.
MIT Press, Cambridge, MA, USA, 1986.

23. P. J. Stuckey. Negation and constraint logic programming. Inf. Comput., 118(1):12–
33, 1995.

24. S.-Å. Tärnlund. Horn clause computability. BIT, 17(2):215–226, 1977.
25. H. C. Wasserman, K. Yukawa, and Z. Shen. An alternative transformation rule for

logic programs. In SAC ’95: Proceedings of the 1995 ACM symposium on Applied
computing, pages 364–368, New York, NY, USA, 1995. ACM Press.



Removing Superfluous Versions in
Polyvariant Specialization of Prolog Programs

Claudio Ochoa1, Germán Puebla1, and Manuel Hermenegildo1,2

1 School of Computer Science, Technical U. of Madrid
{cochoa, german, herme}@fi.upm.es

2 Depts. of Comp. Sci. and El. and Comp. Eng., U. of New Mexico
herme@unm.edu

Abstract. Polyvariant specialization allows generating multiple versions
of a procedure, which can then be separately optimized for different uses.
Since allowing a high degree of polyvariance often results in more opti-
mized code, polyvariant specializers, such as most partial evaluators, can
generate a large number of versions. This can produce unnecessarily large
residual programs. Also, large programs can be slower due to cache miss
effects. A possible solution to this problem is to introduce a minimization
step which identifies sets of equivalent versions, and replace all occurrences
of such versions by a single one. In this work we present a unifying view of
the problem of superfluous polyvariance. It includes both partial deduc-
tion and abstract multiple specialization. As regards partial deduction, we
extend existing approaches in several ways. First, previous work has dealt
with pure logic programs and a very limited class of builtins. Herein we
propose an extension to traditional characteristic trees which can be used
in the presence of calls to external predicates. This includes all builtins,
libraries, other user modules, etc. Second, we propose the possibility of
collapsing versions which are not strictly equivalent. This allows trading
time for space and can be useful in the context of embedded and perva-
sive systems. This is done by residualizing certain computations for ex-
ternal predicates which would otherwise be performed at specialization
time. Third, we provide an experimental evaluation of the potential gains
achievable using minimization which leads to interesting conclusions.

1 Introduction and Motivation

Partial evaluation (PE) of logic programs [3, 13] aims at obtaining code which is
as optimized as possible by performing aggressive unfolding at the local control
level, and by being as accurate as possible (generalize the least possible) at the
global control level, as long as termination is guaranteed. We refer to [7] for a
survey on control issues. In particular, given a fixed local control rule, different
global control rules will have different effects on the polyvariance level of partial
evaluation, i.e., the number of versions produced for each procedure. In general,
a common heuristic is to produce as many different versions as possible, as long
as termination is not compromised, the idea being that by considering differ-
ent versions separately, further optimizations may be uncovered. This heuristic

P.M. Hill (Ed.): LOPSTR 2005, LNCS 3901, pp. 80–97, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Removing Superfluous Versions in Polyvariant Specialization 81

(1) main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O):- (2) addlists ([],[],[]).
write(C), (3) addlists ([A|B],[C|D],[H|T]):-
addlists ([4,4|A],[0,3|B],[4,7|C]), H is A+C,
addlists ([3,3|D],[1,4|E],[4,7|F]), addlists (B,D,T).
addlists ([3,3|G],[1,4|H],I),
addlists ([1,1|J],[3,6|K],L),
addlists ([7,1|M],[1,5|N],O).

Fig. 1. Adding pairs of lists

makes sense from the point of view of optimizing programs in terms of resolution
steps, but it can produce unnecessarily large results, and may even slow down
programs due to cache miss effects.

Example 1. Fig. 1 shows our running example. Predicate addlists/3 adds the
contents of two lists, using the builtin is/2. Clauses are numbered for later
reference. A possible result of partial evaluation for the initial query main/15 is
shown in Fig. 2. Unfolding of main/15 only performs one step since the leftmost
literal write(C) has side-effects, and performing non-leftmost unfolding of any
other literal may backpropagate bindings (as variables may be aliases) onto
write(C). Note that one version has been generated for each call to addlists/3
within the body of main/15, plus one version for the general case. However, the
four versions addlists 2 through addlists 5 are indeed equivalent and could
be replaced by a single one, resulting in the program shown in Fig. 3.

The problem of superfluous polyvariance has been studied both in the context of
abstract multiple specialization [18, 16] and in the context of partial evaluation
of normal logic programs [9]. The common idea is to identify sets of versions
which are equivalent and replace all occurrences of such versions by a single,
canonical, one. This poses two questions which we address in this work: under
which conditions can we consider two given versions as equivalent? And, how
can we efficiently check for equivalence?

In this work, we provide a thorough analysis of these questions, comparing
different approaches for controlling polyvariance, and we also extend previous

main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O) :- write(C),
addlists_2([4,4|A],[0,3|B],[4,7|C]), addlists_3([3,3|D],[1,4|E],[4,7|F]),
addlists_4([3,3|G],[1,4|H],I), addlists_5([1,1|J],[3,6|K],L),
addlists_6([7,1|M],[1,5|N],O).

addlists_1([],[],[]).
addlists_1([A|B],[C|D],[E|F]) :- E is A+C, addlists_1(B,D,F).

addlists_2([4 ,4] ,[0 ,3] ,[4,7]).
addlists_2([4,4,A|B],[0,3,C|D],[4,7,E|F]) :- E is A+C, addlists_1(B,D,F).

addlists_3([3 ,3] ,[1 ,4] ,[4,7]).
addlists_3([3,3,A|B],[1,4,C|D],[4,7,E|F]) :- E is A+C, addlists_1(B,D,F).

addlists_4([3 ,3] ,[1 ,4] ,[4,7]).
addlists_4([3,3,A|B],[1,4,C|D],[4,7,E|F]) :- E is A+C, addlists_1(B,D,F).

addlists_5([1 ,1] ,[3 ,6] ,[4,7]).
addlists_5([1,1,A|B],[3,6,C|D],[4,7,E|F]) :- E is A+C, addlists_1(B,D,F).

addlists_6([7 ,1] ,[1 ,5] ,[8,6]).
addlists_6([7,1,A|B],[1,5,C|D],[8,6,E|F]) :- E is A+C, addlists_1(B,D,F).

Fig. 2. Specialization of addlists/3 via partial evaluation



82 C. Ochoa, G. Puebla, and M. Hermenegildo

main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O) :- write(C),
addlists_5([4,4|A],[0,3|B],[4,7|C]), addlists_5([3,3|D],[1,4|E],[4,7|F]),
addlists_5([3,3|G],[1,4|H],I), addlists_5([1,1|J],[3,6|K],L),
addlists_6([7,1|M],[1,5|N],O) .

addlists_1([],[],[]).
addlists_1([A|B],[C|D],[E|F]) :- E is A+C, addlists_1(B,D,F) .

addlists_5([A,A],[_1,_2],[4,7]).
addlists_5([A,A,B|C],[_1,_2,D|E],[4,7,F|G]) :- F is B+D, addlists_1(C,E,G).

addlists_6([7 ,1] ,[1 ,5] ,[8,6]).
addlists_6([7,1,A|B],[1,5,C|D],[8,6,E|F]) :- E is A+C, addlists_1(B,D,F).

Fig. 3. Specialization of addlists/3 after minimization

approaches in two ways. First, we tackle in an accurate way the case in which
programs contain external predicates, i.e., predicates whose code is not defined in
the program being specialized, and thus it is not available to the specializer. This
includes predicates defined in other user modules, library predicates, builtins,
predicates implemented in other languages, etc. Note that external predicates
may have impure features. The minimization shown in Figure 3 is not possible
in previous works such as [9] as it involves calls to the builtin predicate is/2,
which is not safe in the sense that it may produce bindings during its execution.

Second, previously proposed minimization techniques do not provide any
degrees of freedom at the minimization stage. We propose the possibility of
collapsing versions which are not strictly equivalent. This is achieved by resid-
ualizing certain computations for external predicates which would otherwise be
performed at specialization time. This allows automatically trading time for
space and can be of interest in the context of embedded and pervasive systems,
where computing resources and storage are often limited.

A completely different approach to that studied in this paper is to incorporate
within the global control certain heuristics which limit polyvariance based for
example on characteristic trees [2, 6, 12]. Such approach has both advantages
and disadvantages. The advantage is that there is no need to perform a post
minimization phase, such as that discussed in this paper. On the other hand,
the disadvantage of that approach is that it sometimes produces results which are
suboptimal, since the fact that characteristic trees are equal not always means
that the corresponding versions should be merged.

We argue that a minimization phase is important in specialization algorithms,
since it allows using very accurate global control rules while limiting the risk of
generating large residual code. Rather than deciding a priori the best global
control possible, this technique allows using aggressive control strategies. We
can minimize the program a posteriori and eliminate those specialized versions
which are redundant.

2 Background

We assume some basic knowledge on the terminology of logic programming. See
for example [14] for details. Very briefly, an atom A is a syntactic construction



Removing Superfluous Versions in Polyvariant Specialization 83

of the form p(t1, . . . , tn), where p/n, with n ≥ 0, is a predicate symbol and
t1, . . . , tn are terms. The function pred applied to atom A, i.e., pred(A), returns
the predicate symbol p/n for A. A clause is of the form H ← B where its head
H is an atom and its body B is a conjunction of atoms. A definite program is a
finite set of clauses. A goal (or query) is a conjunction of atoms. We denote by
{X1 �→ t1, . . . , Xn �→ tn} the substitution σ with σ(Xi) = ti for all i = 1, . . . , n
(with Xi �= Xj if i �= j) and σ(X) = X for any other variable X , where ti are
terms. We denote with ε the empty substitution. Also, dom(σ) denotes the set
of variables affected by substitution σ, i.e., dom({X1 �→ t1, . . . , Xn �→ tn}) =
{X1, . . . , Xn}.

A term t is more general than s (or s is an instance of t), in symbols t ≤ s,
if ∃σ. tσ = s. Two terms t and t′ are variants , denoted t ≈ t′, if there exists a
renaming ρ such that tρ = t′. A unifier of a pair of terms {t1, t2} is a substitution
σ such that t1σ = t2σ. A unifier σ is called most general unifier (mgu) if σ ≤ σ′

for every other unifier σ′. A generalization of a set of terms {t1, . . . , tn} is another
term t such that ∃θ1, . . . , θn with ti = tθi, i = 1, . . . , n. A generalization t is the
most specific generalization (msg) of {t1, . . . , tn} if for every other term t′ s.t.
t′ is a generalization of {t1, . . . , tn}, t′ ≤ t. Given a set of clauses {Cl1 = H1 ←
B1, . . . , Cln = Hn ← Bn}, n ≥ 0, we denote by instantiate({Cl1, . . . , Cln}, A)
the set of clauses {Cl1θ1, . . . , Clnθn} where each θi = mgu(Hi, A).

2.1 Basics of Partial Evaluation

Traditional algorithms for on-line partial evaluation of logic programs (known
as partial deduction (PD) [13, 3]) usually include two control levels: local control
and global control [3]. Local control defines an unfolding rule. Given an atom
A, an unfolding rule computes a set of finite SLD derivations D1, . . . , Dn (i.e.,
a possibly incomplete SLD tree) of the form Di = A, . . . , Gi with computed
answer substitution θi for i = 1, . . . , n. We use U(P, G) = τ to denote the fact
that the unfolding rule U when applied to goal G in program P returns the SLD
tree τ . The global control rule decides when and how to generalize atoms before
applying the unfolding rule to them. Such generalization steps are necessary
in order to guarantee that the number of atoms to which the unfolding rule is
applied remains finite. We refer to [7] for a survey on both control issues.

3 A General View of Polyvariance and Minimization

We now present a very general description of a polyvariant specialization process
which includes both partial evaluation [13, 3, 7] and abstract multiple special-
ization [16]. Given a program P and a set of atoms Q = {A1, . . . , Am}, which
describe the possible initial queries to P , polyvariant specialization performs the
following three steps:

1. Analysis. In this phase, we compute a set of call patterns {A1, . . . , An} ⊇ Q
which cover all calls in the specialized program. We write Analysis(P,Q)



84 C. Ochoa, G. Puebla, and M. Hermenegildo

= {A1, . . . , An} to denote that the result of analysis for P and Q is the set
of call patterns {A1, . . . , An}.

2. Code Generation. The aim of this phase is, for each call pattern Ai ∈
Analysis(P,Q), to compute properly optimized residual code. We denote
by code(Ai) the code (set of clauses) associated to Ai. In partial evaluation,
an unfolding rule U is used for generating code, i.e., code(Ai) = U(P, Ai).

3. Renaming. In this phase we assign a fresh predicate name to each atom in
{A1, . . . , An}. Then, for each code(Ai), we perform appropriate renamings
in the head and body atoms so that each program point uses a correct (and
as optimized as possible) version. Ren denotes the renaming function.

The polyvariant specialized program PQ is then defined as:

PQ =
Analysis(P,Q)⋃

Ai

Ren(code(Ai))

3.1 Minimizing the Results of Polyvariant Specialization

The aim of minimization is to group the call patterns (or versions) in {A1, . . . ,
An} into equivalence classes, obtaining a minimal program that allows the same
set of optimizations, and that can be implemented without introducing run-time
tests to select amongst different versions of a predicate.

Deciding whether two versions Ai and Aj with pred(Ai) = pred(Aj) are
equivalent is not straightforward, as we have to consider not only the code of
Ai and Aj , but also the code of all other versions which are reachable from
them. In the case of the main predicate in a program, we would have to take
the code of all the specialized program into account. Thus, we will split the
notion of equivalence into a local equivalence and a global equivalence level. Local
equivalence concentrates on comparing the code for Ai and Aj only, without
worrying about the other predicates which are reachable from them. Global
equivalence will only hold if Ai and Aj are locally equivalent and all reachable
versions for the corresponding program points are also locally equivalent.

The minimization algorithm (called Minimize from now on) consists of two
phases. In [17], the first phase is called reunion and the second phase is called
splitting. The reunion phase is concerned with local equivalence only and it
places together all versions for the same predicate which are considered locally
equivalent according to some criteria. The splitting phase is concerned with
global equivalence. It splits sets of versions which are not globally equivalent
until no more splitting is needed, i.e., until we have reached a partition where all
sets contain versions which are globally equivalent. This minimization process is
isomorphic to the minimization of deterministic finite automata (DFA) [5], by
considering each call pattern Ai as a state and each program point in code(Ai)
as a symbol.

A crucial point thus is, given a pair of atoms A and A′, to decide whether they
can be safely considered locally equivalent. The decision criteria has to satisfy
two properties: (1) it must produce correct results, and (2) it must be effective,



Removing Superfluous Versions in Polyvariant Specialization 85

i.e. it must be possible to efficiently decide whether A and A′ are candidates for
equivalence based on syntactic, local conditions. For this purpose, in this work
we introduce structural equivalence.

Definition 1 (structurally equivalent). Let A1 and A2 be two call patterns
such that pred(A1)=pred(A2). We say that A1 and A2 are structurally equiva-
lent iff

C = msg(code(A1), code(A2))
∧ instantiate(C, A1) ≈ code(A1)
∧ instantiate(C, A2) ≈ code(A2)

Clearly, if code(A1) ≈ code(A2) then A1 and A2 are structurally equivalent.
However the definition above allows also considering as structurally equivalent
call patterns whose code only differs in constants which are input arguments
to the predicate but which do not play an important role for local optimiza-
tion. Note that structural equivalence is just a syntactic characterization which
guarantees that two call patterns are locally equivalent. In fact, there can be
call patterns which are locally equivalent in the sense that their behaviours un-
der the semantics of interest are identical but which our definition of structural
equivalence would not capture. Also, structural equivalence in particular, and
local equivalence in general do not guarantee global equivalence. It often hap-
pens that two call patterns which are structurally equivalent end up in different
equivalence classes after the splitting phase. Only after this phase terminates we
can be sure that two call patterns are globally equivalent.

The polyvariant specialized program with minimization PMin
Q is defined as:

PMin
Q =

Minimize(Analysis(P,Q))⋃
Vi

Ren≡(code(Vi))

where given a set of atoms {A1, . . . , An}, we partition them in equivalence classes
{V1, . . . , Vk}, k ≥ n s.t. ∀A, A′ ∈ Vi . A and A′ are structurally equivalent. We
use code({A1, . . . , Ai}) to denote msg({code(A1), . . . , code(Ai)}). Also, Ren≡ is
a new renaming function which always uses the same (canonical) predicate name
for any atom in {A1, . . . , Ai}.

Our definition of structural equivalence plays several roles. It underlies the
notions of local equivalence used both in abstract multiple specialization and
partial deduction, thus allowing us to present a unified view of both minimiza-
tion processes. Furthermore, it can also be used in order to determine whether
two versions are locally equivalent. Existing approaches to minimization do not
compare the syntactic structure of the residual code directly (as this definition
would require) but rather use the specialization history in order to decide local
equivalence. In [16] two call patterns are considered locally equivalent iff (1)
they correspond to the same predicate in the original program and (2) the set
of optimizations in both call patterns is the same. In [9] two call patterns are
locally equivalent iff they have the same characteristic tree.



86 C. Ochoa, G. Puebla, and M. Hermenegildo

4 Characteristic Trees with External Predicates

A characteristic tree [2] is a data structure which encapsulates the evaluation
behaviour of an atom, i.e., a trace of the unfolding process. The following defi-
nitions are taken from [9], which in turn were derived from [2].

Definition 2 (characteristic path). Let G0 be a goal, and let P be a definite
program whose clauses are numbered. Let G0, . . . , Gn be the goals of a finite,
possibly incomplete SLD-derivation D of P ∪ {G0}. The characteristic path of
the derivation D is the sequence 〈l0 : c0, . . . , ln−1 : cn−1〉, where li is the position
of the selected atom in Gi, and ci is the number of the clause chosen to resolve
with Gi.

Now that we have characterized derivations, we can characterize goals through
the derivations in their associated SLD-trees.

Definition 3 (characteristic tree). Let G be a goal, P a definite program, and
τ a finite SLD-tree for P ∪ {G}. Then the characteristic tree τ̂ of τ is the set
containing the characteristic paths of the nonfailing SLD-derivations associated
with the branches of τ .
Let U be an unfolding rule such that U(P, G) = τ . Then τ̂ is also called the char-
acteristic tree of G (in P ) via U . We introduce the notation ch tree(G, P, U) = τ̂ .

Although existing partial evaluation systems such as SP [1] and ECCE [10]
perform some limited handling of builtins within characteristic trees, the existing
formal definitions of characteristic trees do not contemplate the existence of
builtins nor of external predicates. We now extend the standard definitions in
order to accurately include external predicates.

Definition 4 (chpath with external predicates). Let G0 be a goal, and let
P be a program whose clauses are numbered. Let G0, . . . , Gn be the goals of a
finite, possibly incomplete SLD-derivation D of P ∪ {G0}. Let A0, . . . , An−1 be
the selected atoms in D. The characteristic path with external predicates of the
derivation D is the sequence 〈l0 : c0, . . . , ln−1 : cn−1〉, where li is the position of
Ai in Gi, and ci is defined as follows:
– if pred(Ai) is defined in P , then ci is the number of the clause in P chosen

to resolve with Gi;
– if pred(Ai) is an external predicate, then let θ be a computed answer gener-

ated when performing exec(Ai). Then, ci is a pair (Ai, θ).

In the definition above, exec(Ai) represents the execution of Ai. For this, the
external call Ai has to be evaluable [15], i.e., Ai is both well-moded and well-
typed, it does not produce any side-effect, and it universally terminates. Note
that exec(Ai) can succeed more than once and possibly with different computed
answers. Reconsidering characteristic paths, each pair (li : ci) in a characteristic
path must uniquely identify: (1) the position of the selected atom Ai, (2) the
bindings introduced by this step on the current goal, and (3) the atoms which



Removing Superfluous Versions in Polyvariant Specialization 87

τ2 = {〈1 : 3, 1 : (4 is 4 + 0, ε), 1 : 3, 1 : (7 is 4 + 3, ε), 1 : 2〉,
〈1 : 3, 1 : (4 is 4 + 0, ε), 1 : 3, 1 : (7 is 4 + 3, ε), 1 : 3〉},

τ3 = {〈1 : 3, 1 : (4 is 3 + 1, ε), 1 : 3, 1 : (7 is 3 + 4, ε), 1 : 2〉,
〈1 : 3, 1 : (4 is 3 + 1, ε), 1 : 3, 1 : (7 is 3 + 4, ε), 1 : 3〉},

τ4 = {〈1 : 3, 1 : (A is 3 + 1, {A �→ 4}), 1 : 3, 1 : (B is 3 + 4, {B �→ 7}), 1 : 2〉,
〈1 : 3, 1 : (C is 3 + 1, {C �→ 4}), 1 : 3, 1 : (D is 3 + 4, {D �→ 7}), 1 : 3〉},

τ5 = {〈1 : 3, 1 : (E is 1 + 3, {E �→ 4}), 1 : 3, 1 : (F is 1 + 6, {F �→ 7}), 1 : 2〉,
〈1 : 3, 1 : (G is 1 + 3, {G �→ 4}), 1 : 3, 1 : (H is 1 + 6, {H �→ 7}), 1 : 3〉}.

τ6 = {〈1 : 3, 1 : (I is 7 + 1, {I �→ 8}), 1 : 3, 1 : (J is 1 + 5, {J �→ 6}), 1 : 2〉,
〈1 : 3, 1 : (L is 7 + 1, {L �→ 8}), 1 : 3, 1 : (M is 1 + 5, {M �→ 6}), 1 : 3〉}.

Fig. 4. Characteristic trees for addlists/3 versions

must be introduced in the goal in place of the selected atom Ai. An important
obvious difference between external and regular predicates is that the code for
external predicates may not be available, so it is not possible, as done with
regular predicates, to assign clause numbers to them or to unfold them. Instead
of unfolding external predicates, we will fully execute them. As a result, no atoms
will be introduced in the current goal and, thus, (3) is not needed in this case.

In the case of external predicates, we introduce in the characteristic tree an ex-
ternal success, i.e., a pair (Ai, θ) containing the call pattern Ai and the bindings θ
generated during evaluation for each external predicate. Note that, in contrast to
the handling of builtins within characteristic trees in SP and ECCE, this makes
it possible to reconstruct the residual code for an atom without the need for
(re-)evaluating external predicates, even if the external predicates succeed several
times with (possibly) different computed answers. The notion of characteristic
paths with external predicates is indeed consistent with traditional characteristic
paths. In the case of regular predicates, the same implicit representation as in
traditional characteristic paths is used. This representation is efficient in space
since rather than introducing (an instantiated version of) the clause chosen for
resolving the selected atom directly in the characteristic tree, only the number of
the clause used for unfolding is stored. This suffices since the actual instantiation
can be performed later if needed using the actual clause. In the case of external
predicates, this implicit representation is no longer possible, since the clauses
are not available. Instead, the call pattern and the corresponding bindings are
explicitly stored.

Characteristic trees are extended to handle external predicates by simply con-
sidering characteristic paths with external predicates. Fig. 4 shows the character-
istic trees with external predicates τ2, τ3, τ4, τ5 and τ6 for versions addlists 2/3,
addlists 3/3, addlists 4/3, addlists 5/3, and addlists 6/3, respectively.

5 Isomorphic Characteristic Trees

In this section we define the notion of isomorphic characteristic trees with ex-
ternal predicates, which guarantees that the corresponding code is structurally
equivalent. We assume that predicate names cannot be numbers, as is the case
in most existing logic programming systems. Also, number(X) succeeds iff X is
a number.



88 C. Ochoa, G. Puebla, and M. Hermenegildo

First, we introduce the concept of quasi-isomorphic characteristic trees, for
identifying characteristic trees which only (possibly) differ in the input and/or
output values of arguments in calls to external predicates:

Definition 5 (quasi-isomorphic characteristic trees). Two characteristic
paths δ1 = 〈l0 : c1

0, . . . , lm : c1
m〉 and δ2 = 〈l0 : c2

0, . . . , lm : c2
m〉 are quasi-

isomorphic and we denote it δ1 ≈q δ2 iff ∀i ∈ {1..m} . number(c1
i ) ⇒ c1

i = c2
i .

Two characteristic trees τ1 and τ2 are quasi-isomorphic, denoted τ1 ≈q τ2, iff
∀δ1 ∈ τ1 . ∃δ2 ∈ τ2 s.t. δ1 ≈q δ2 and ∀δ2 ∈ τ2 . ∃δ1 ∈ τ1 s.t. δ2 ≈q δ1.

Note that quasi-isomorphic characteristic paths must have the same length and
the selected atom must be in the same position in each resolution step. Further-
more, if the atom is not for an external predicate, then the atom must have been
resolved against the same clause. In Fig. 4, τ2 ≈q τ3 ≈q τ4 ≈q τ5 ≈q τ6.

Now we define some relationships among external successes, after some aux-
iliary definitions. A position uniquely determines a subterm within a term.

Definition 6 (Position). A position ω is either the empty position ε, or n.ω′,
where n is a natural number and ω′ is a position.

Definition 7 (getval, Pos, and Allpos). Let A = f(tn) be a term. Let ω be
a position. Let X be a variable s.t. X ∈ vars(A). Let θ be a substitution.
– We define getval(ω, A) as A if ω = ε and as getval(ω′, ti) if ω = i.ω′.
– We define Pos(A, X) as {ω | getval(ω, A) = X}.
– We define Allpos(A, θ) as ∪X∈dom(θ){ω}, s.t. ω ∈ Pos(A, X).

Example 2. getval(2.1.ε, f(a, g(b, c))) = b, and Pos(f(a, g(b, Y )), Y ) = {2.2.ε}.
If A is not linear, then for some X, the set Pos(A, X) may have more than one el-
ement. E.g., Pos(f(Z, g(Z)), Z) = {1.ε, 2.1.ε}. In such case, any ω ∈ Pos(A, X)
can be used for our purposes. Also Allpos(A is 3 + 1, {A �→ 4}) = {1.ε}.

Definition 8 (isomorphic external successes). Let c = (A, θ) and c′ =
(A′, θ′) be external successes. Then c and c′ are isomorphic external successes,
denoted by c ! c′, iff ∀ω ∈ Allpos(A, θ) ∪ Allpos(A′, θ′) . getval(ω, Aθ) =
getval(ω, A′θ′).

Example 3. This definition tries to consider as isomorphic as many pairs of ex-
ternal successes as possible. A particular subcase of this definition corresponds
to the case where the calls to external predicates generate no bindings. For ex-
ample, the pair (4 is 4+0, ε) and (4 is 3+1, ε) is isomorphic, whereas the notion of
equivalence in [9] cannot capture this since the builtin predicate is/2 potentially
generates bindings, though in this case it does not. Note that (4is4 + 0, ε) and
(8is2∗4, ε) are also considered as isomorphic although their syntactic structure is
very different. Another interesting subcase is when the external successes have
different levels of instantiation but on success they are variants. This happens
with (A is 3+1, {A 
→ 4}) and (4 is 3+1, ε). Furthermore, it allows considering as
isomorphic external successes which have the same values in all positions which



Removing Superfluous Versions in Polyvariant Specialization 89

are instantiated in either external success. For example (A is 3 + 1, {A 
→ 4})
and (4 is 4 + 0, ε) are considered isomorphic since Allpos(A is 3 + 1, {A 
→ 4}) =

{1.ε}∧Allpos(4 is 4+0, ε}) = ∅∧getval(1.ε, 4 is 3+1) = getval(1.ε, 4 is 4+0) = 4. How-
ever, (E is 1+3, {E 
→ 4}) �� (I is 7+1, {I 
→ 8}), since Allpos(E is 1+3, {E 
→ 4}) =

Allpos(I is 7+1, I) = {1.ε}, but getval(1.ε, 4 is 1+3) = 4 �= getval(1.ε, 8 is 7+1) = 8.

Definition 9 (isomorphic characteristic trees). Two characteristic paths
δ1 = 〈l0 : c1

0, . . . , lm : c1
m〉 and δ2 = 〈l0 : c2

0, . . . , lm : c2
m〉 are isomorphic

and we denote it δ1 ≈ δ2 iff δ1 ≈q δ2 ∧ ∀i ∈ {1..m} . c1
i = (A1

i , θ
1
i ) ⇒ c2

i =
(A2

i , θ
2
i ) ∧ c1

i ! c2
i . Two characteristic trees τ1 and τ2 are isomorphic, denoted

τ1 ≈ τ2, iff ∀δ1 ∈ τ1 . ∃δ2 ∈ τ2 s.t. δ1 ≈ δ2 and ∀δ2 ∈ τ2 . ∃δ1 ∈ τ1 s.t. δ2 ≈ δ1.

The following proposition provides the basis for our minimization approach.

Proposition 1 (structural equivalence). Let P be a program with external
predicates, let U be an unfolding rule, let A1 and A2 be two call patterns such
that τ1 = ch tree(A1, P, U) and τ2 = ch tree(A2, P, U). If τ1 ≈ τ2 then A1 and
A2 are structurally equivalent.

A difficulty with our notion ≈ of isomorphic characteristic trees and its usage
as a condition for local equivalence is that though the ≈ relation is reflexive and
symmetric, it is not transitive. This means that (τ1 ≈ τ2 ∧ τ2 ≈ τ3) �→ τ1 ≈ τ3.
As a result, in order to be able to state that all characteristic trees in a set
{τ1, . . . , τn} are isomorphic we have to check that ∀τ, τ ′ ∈ {τ1, . . . , τn} .τ ≈ τ ′.

Example 4. Let us consider again the characteristic trees in Fig. 4. We have
already noticed that all of them are quasi-isomorphic. If we take the quasi-
isomorphic paths of τ2, τ3, τ4 and τ5, and extract their external successes, we
can see that they are isomorphic. For example, if we take c21 = (4 is 4 + 0, ε),
c31 = (4 is 3+1, ε), c41 = (A is 3+1, {A �→ 4}) and c51 = (C is 1+3, {C �→ 4}),
we can compute ∪i∈{2...5}Allpos(ci1) = {1.ε}. Since getval(1.ε, 4 is 4 + 0) =
getval(1.ε, 4 is 3 + 1) = getval(1.ε, 4 is 1 + 3) = 4, we can conlude that they are
isomorphic.

Finally, note that even though τ5 ≈q τ6, they are not (fully) isomorphic
since, for instance, (E is 1 + 3, {E 
→ 4}) �� (I is 7 + 1, {I 
→ 8}). Indeed,
addlists 5/3 and addlists 6/3 are not structurally equivalent. As a result,
the sets which are identified as locally equivalent during the reunion phase are:
{{main/15}, {addlists 1/3},{addlists 2/3,addlists 3/3,addlists 4/3,
addlists 5/3}, {addlists 6/3}}. This is also the final partition after apply-
ing the splitting phase. This produces the minimized program which was shown
in Fig. 3.

6 Minimization Via Residualization of External Calls

There are situations in which even the minimized program is too large and/or
where we would like to trade space for time efficiency. This would mean achiev-
ing programs which are smaller, but at the cost of introducing some efficiency



90 C. Ochoa, G. Puebla, and M. Hermenegildo

penalty. In cases like this, we propose as candidates for minimization, call pat-
terns with quasi-isomorphic characteristic trees. An important observation is
that if δ1 ≈q δ2 then the associated resultants have the same structure. How-
ever, this is not a sufficient condition for structural equivalence. This is because
part of the bindings needed for structural equivalence cannot be achieved by the
operation instantiate, as in Def. 1, but rather they originate from the execution
of calls to external predicates. Thus, the second important observation is that
if the calls to external predicates involved succeed only once, i.e. they are de-
terministic, such missing bindings can be recovered at run-time by residualizing
(part of the) calls to external predicates which had in principle taken place dur-
ing specialization time. Note that for detecting determinacy, no static analysis
is actually required. We can simply check whether the calls which are to be
residualized succeed just once by directly executing the calls as they appear in
the different characteristic trees, i.e., before applying the msg to them. After the
required external predicates have been residualized, the corresponding versions
will be structurally equivalent.
The strategy we propose is the following: for any pair of versions A1 and A2
with τ1 = ch tree(A1, P, U) and τ2 = ch tree(A2, P, U) s.t. τ1 ≈q τ2 we

1. Compute (C, T ) = msg((code(A1), τ1), (code(A2), τ2)), where ∀i ∈ {1..2}.τ i

is obtained from τi by evaluating all external successes, i.e., ∀(B, θ) we re-
place it by Bθ.

2. If ∀i ∈ {1..2} . instantiate(C, Ai) ≈ code(Ai)
– then A1 and A2 are structurally equivalent. No need to residualize.
– else if for every evaluated external success c ∈ T such that c is no

longer sufficiently instantiated to be executed we can determine that its
corresponding c1 ∈ τ1 and c2 ∈ τ2 are both deterministic,
• then residualize all c ∈ T being no longer sufficiently instantiated.
• otherwise we cannot collapse A1 and A2.

Note that without such residualization, the code generated by the msg is not
directly usable, since there are bindings in the original versions which are lost if
we apply the code produced by the msg.

msg

{addlists([4, 4], [0, 3], [4, 7])., 〈1 : (4 is 4 + 0), 1 : (7 is 4 + 3)〉}
{addlists([3, 3], [1, 4], [4, 7])., 〈1 : (4 is 3 + 1), 1 : (7 is 3 + 4)〉}
{addlists([3, 3], [1, 4], [4, 7])., 〈1 : (4 is 3 + 1), 1 : (7 is 3 + 4)〉}
{addlists([1, 1], [3, 6], [4, 7])., 〈1 : (4 is 1 + 3), 1 : (7 is 1 + 6)〉}

{addlists([X, X], [Y, Z], [4, 7])., 〈1 : (4 is X + Y ), 1 : (7 is X + Z)〉}

msg

{addlists([4, 4, A|B], [0, 3, C|D], [4, 7, E|F ]) : −E is A + C, addlists(B, D, F ).,
〈1 : (4 is 4 + 0), 1 : (7 is 4 + 3)〉}

{addlists([3, 3, A|B], [1, 4, C|D], [4, 7, E|F ]) : −E is A + C, addlists(B, D, F ).,
〈1 : (4 is 3 + 1), 1 : (7 is 3 + 4)〉}

{addlists([3, 3, A|B], [1, 4, C|D], [4, 7, E|F ]) : −E is A + C, addlists(B, D, F ).,
〈1 : (4 is 3 + 1), 1 : (7 is 3 + 4)〉}

{addlists([1, 1, A|B], [3, 6, C|D], [4, 7, E|F ]) : −E is A + C, addlists(B, D, F ).,
〈1 : (4 is 1 + 3), 1 : (7 is 1 + 6)〉}

{addlists([X, X, R|S], [Y, Z, T |U ], [4, 7, V |W ]) : −V is R + T, addlists(S, U, W ).,
〈1 : (4 is X + Y ), 1 : (7 is X + Z)〉}

Fig. 5. msg of versions addlists 2, addlists 3, addlists 4 and addlists 5



Removing Superfluous Versions in Polyvariant Specialization 91

Example 5. As we have already mentioned, all characteristic trees in Fig. 4 are
quasi-isomorphic. Therefore, they can be collapsed into one version. In Fig. 5
we show the msg of both the code and the characteristic trees for versions
addlists 2, addlists 3, addlists 4 and addlists 5. In this figure, the scope
of variables is local to each clause. Since τ2 ≈ τ3 ≈ τ4 ≈ τ5, the msg does not
produce any information loss. This can be easily verified by instantiating back
the msg with any of the call patterns. For instance, if we take addlists([X,X],
[Y,Z],[4,7]) and instantiate it with addlists([3,3|G],[1,4|H],I) we ob-
tain the original clause (eighth clause of Fig. 2).

Example 6. Now, let us now compute the msg of the generalized code and char-
acteristic tree obtained in Example 5 with addlists 6.

msg
{addlists([X, X], [Y, Z], [4, 7])., 〈1 : (4 is X + Y ), 1 : (7 is X + Z)〉}
{addlists( [7, 1], [ 1, 5], [8, 6])., 〈1 : (8 is 7 + 1), 1 : (6 is 1 + 5)〉}

{addlists([A, B], [C, D], [E, F ])., 〈1 : (E is A + C), 1 : (F is B + D)〉}

msg

{addlists([X, X, R|S], [Y, Z, T |U ], [4, 7, V |W ]) : −V is R + T, addlists(S, U, W ).,
〈1 : (4 is X + Y ), 1 : (7 is X + Z)〉}

{addlists([7, 1, R|S], [ 1, 5, T |U ], [8, 6, V |W ]) : −V is R + T, addlists(S, U, W ).,
〈1 : (8 is 7 + 1), 1 : (6 is 1 + 5)〉}

{addlists([A, B, G|H], [C, D, I|J], [E, F, K|L]) : −K is G + I, addlists(H, J, L).,
〈1 : (E is A + C), 1 : (F is B + D)〉}

Since addlists 6 is not (fully) isomorphic with the other versions, the msg in-
troduces some information loss through the variables E and F in the new heads
addlists([A,B], [C, D], [E, F ]) and addlists([A,B, G|H ], [C, D, I |J ], [E, F, K|L]). This
information loss cannot be recovered by instantiate, since, for example, when
instantiating the msg addlists([A,B],[C,D],[E,F]) with the call pattern
addlists([3,3|G],[1,4|H],I) we obtain addlists([3,3],[1,4],[E,F]), in
which E and F are unbound variables. If we take the external successes which
correspond to E is A+C and F is B+D we can verify that the original external
successes were deterministic (indeed, all calls to is/2 are deterministic). Thus,
it is possible to collapse by residualization. As both external calls are no longer
sufficiently instantiated, they are residualized. Residualized atoms are always
placed before any other atom in the generalized clause, guaranteeing that after
execution of such residual atoms at run-time, the clause as a whole is actually a
variant of the original definition of the clause. The resulting minimized program
is shown in Fig. 6. Residual atoms are underlined to distinguish them from the
rest of atoms in body clauses.

main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O) :- write(A),
addlists_6([4,4|A],[0,3|B],[4,7|C]), addlists_6([3,3|D],[1,4|E],[4,7|F]),
addlists_6([3,3|G],[1,4|H],I), addlists_6([1,1|J],[3,6|K],L),
addlists_6([7,1|M],[1,5|N],O) .

addlists_1([],[],[]).
addlists_1([A|B],[C|D],[E|F]) :- E is A+C, addlists_1(B,D,F) .

addlists_6([A,B],[C,D],[E,F]) :- E is A+C, F is B+D.
addlists_6([A,B,G|H],[C,D,I|J],[E,F,K|L]) :- E is A+C, F is B+D,

K is G+I, addlists_1(H,J,L) .

Fig. 6. Specialization of addlists/3 after minimization with residualization



92 C. Ochoa, G. Puebla, and M. Hermenegildo

7 Experimental Results

In this section we assess experimentally the impact of our proposed minimiza-
tion. Most of the benchmarks considered contain calls to builtins which possibly
generate bindings, such as is/2, and thus the existing partial evaluators which
perform minimization [10, 11] would not be able to minimize them optimally.

In our experiments we use an unfolding rule based on homeomorphic em-
bedding (see, e.g., [7]) and which performs leftmost unfolding steps only. This
guarantees the correctness of the partial evaluation process even in the presence
of impure predicates. Note that the issue of redundant polyvariance may occur
for any unfolding rule. The global control rule is based on homeomorphic em-
bedding and global trees [8]. All benchmarks have been run on an Intel Pentium
4, 3.4 GHz processor, with 512 Mb of RAM, and running a 2.6 Linux kernel.

7.1 The Benefits of Minimization

Table 1 shows the size reduction introduced by the minimization step after par-
tial evaluation. Each benchmark program is evaluated using five different mini-
mization criteria, as shown in the Min Crit column. Specialization history is used
in pure, nobinds, and bindings, in order to consider two versions as locally equiv-
alent, while codemsg directly applies the definition of structural equivalence for
the same purpose. In particular, pure considers two versions as locally equivalent
when their characteristic trees are identical. Of course, if external successes are
included, these must be identical too. The criteria nobinds and bindings check
for isomorphism of external successes instead. Nobinds only considers two exter-
nal successes c and c′ as isomorphic when they generate no bindings, i.e., when
Allpos(c) = Allpos(c) = ∅, while bindings applies the full power of Def. 8. Fi-
nally, residual considers two versions as candidates for minimization when their
characteristic trees are quasi-isomorphic, possibly residualizing calls to external
predicates in the resulting program.

The number of predicates in the original program is shown in the column Orig
Preds. The number of predicates in the specialized programs are shown under
the column Versions. PE shows both the number of versions which are generated
after partial evaluation (i.e., the effects of polyvariance) and the number of sets of
predicates with quasi-isomorphic characteristic trees. The latter provides a lower
bound on the number of predicates which the minimized program may have. Min
shows the number of elements in the partition generated by the reunion phase of
the minimization algorithm (local equivalence) and the number of elements in the
partition after the splitting phase (global equivalence). Finally, Ratio shows the
reduction ratio for each criteria compared to the number of versions produced by
partial evaluation. The column Size compares the sizes of the compiled bytecode
of programs minimized using the different criteria.

The last row, Overall, shows the weighted geometric mean (wgm) for ratios
in terms of number of versions and size. Weights are number of versions and
size of the PE column, respectively. In both cases, under the column Min we
find the wgm of the codemsg criterion, which achieves the best results while still



Removing Superfluous Versions in Polyvariant Specialization 93

Table 1. Benchmarks (Minimization Ratios)

Benchmark Min
Crit

Orig
Preds

Minimization
Versions Size (bytes)

PE Min Ratio PE Min Ratio

datetime

pure

15 56/31

36/36 1.78

131377

102651 1.28
nobinds 36/36 1.78 102836 1.28
bindings 34/35 1.83 102331 1.28
codemsg 34/35 1.83 102295 1.28
residual 31/33 1.94 100976 1.30

flattrees

pure

2 33/16

22/22 1.50

226390

223320 1.01
nobinds 22/22 1.50 223435 1.01
bindings 22/22 1.50 223389 1.01
codemsg 17/19 1.74 221513 1.02
residual 16/18 1.83 220796 1.03

freeof

pure

3 93/8

35/35 2.66

292642

245262 1.19
nobinds 35/35 2.66 245442 1.19
bindings 32/35 2.66 245370 1.19
codemsg 18/35 2.66 245334 1.19
residual 8/35 2.66 245370 1.19

mmatrix 2

pure

3 70/11

18/34 2.06

58323

37061 1.57
nobinds 18/34 2.06 37236 1.57
bindings 18/34 2.06 37166 1.57
codemsg 18/34 2.06 37131 1.57
residual 11/30 2.33 31781 1.84

nrev 38

pure

2 41/3

3/3 13.67

25115

5261 4.77
nobinds 3/3 13.67 5281 4.76
bindings 3/3 13.67 5273 4.76
codemsg 3/3 13.67 5269 4.77
residual 3/3 13.67 5273 4.76

qsort 33

pure

3 168/50

68/68 2.47

232079

166288 1.40
nobinds 50/50 3.36 131650 1.76
bindings 50/50 3.36 131548 1.76
codemsg 50/50 3.36 131497 1.76
residual 50/50 3.36 131548 1.76

sublists

pure

4 29/19

27/27 1.11

101969

99986 1.02
nobinds 27/27 1.11 100121 1.02
bindings 19/19 1.58 95815 1.06
codemsg 19/19 1.58 95795 1.06
residual 19/19 1.58 95815 1.06

Overall 2.88 / 2.96 1.32 / 1.33

producing programs of maximal optimization. Under the column Ratio we find
the wgm of the residual criterion, which achieves highest ratio.

As can be seen in the table, in most of the benchmarks considered, minimiza-
tion is capable of considerably reducing the specialized program, both in terms
of number of versions and of bytecode size. As it is to be expected, out of the
four criteria which are guaranteed to produce programs of maximal optimization,



94 C. Ochoa, G. Puebla, and M. Hermenegildo

Table 2. Benchmarks (Minimization Times)

Benchmark
Minimization
Criteria

Minimization Times (msec)
Total Analysis Minim Codegen Slowdown

datetime

nomin 556.52 475.33 0 81.19 1
pure 632.90 486.13 61.19 85.59 1.14
nobinds 634.30 476.13 72.79 85.39 1.14
bindings 640.10 479.93 73.99 86.19 1.15
codemsg 642.30 478.13 79.19 84.99 1.15
residual 687.30 479.93 77.59 129.78 1.23

flattrees

nomin 299.55 232.56 0 66.99 1
pure 395.14 230.97 107.78 56.39 1.32
nobinds 396.34 231.57 108.58 56.19 1.32
bindings 400.19 230.21 113.48 56.49 1.34
codemsg 412.74 231.36 125.98 55.39 1.38
residual 424.94 231.36 125.78 67.79 1.42

freeof

nomin 5732.93 5583.15 0 149.78 1
pure 5833.11 5589.95 118.98 124.18 1.02
nobinds 5844.11 5589.15 131.38 123.58 1.02
bindings 5858.31 5573.35 160.38 124.58 1.02
codemsg 5948.90 5595.15 230.97 122.78 1.04
residual 6113.47 5613.95 221.97 277.56 1.07

mmatrix 2

nomin 316.15 271.76 0 44.39 1
pure 356.55 272.76 48.39 35.39 1.13
nobinds 367.14 274.56 57.39 35.19 1.16
bindings 364.34 272.76 55.99 35.59 1.15
codemsg 373.34 274.96 63.19 35.19 1.18
residual 435.53 270.76 60.79 103.98 1.38

nrev 38

nomin 898.26 877.07 0 21.20 1
pure 886.67 861.27 13.20 12.20 0.99
nobinds 901.86 872.67 16.80 12.40 1.00
bindings 898.86 870.27 16.40 12.20 1.00
codemsg 903.86 874.67 17.20 12.00 1.01
residual 916.26 873.87 17.20 25.20 1.02

qsort 33

nomin 9983.68 9745.12 0 238.56 1
pure 10267.64 9778.91 282.96 205.77 1.03
nobinds 10303.83 9768.12 337.75 197.97 1.03
bindings 10339.03 9771.91 368.94 198.17 1.04
codemsg 10401.82 9764.92 441.73 195.17 1.04
residual 11241.69 9732.72 371.14 1137.83 1.13

sublists

nomin 401.94 293.56 0 108.38 1
pure 647.70 295.35 278.56 73.79 1.61
nobinds 651.90 297.75 281.36 72.79 1.62
bindings 679.50 295.56 280.16 103.78 1.69
codemsg 681.30 297.56 278.76 104.98 1.70
residual 744.09 296.95 284.56 162.57 1.85



Removing Superfluous Versions in Polyvariant Specialization 95

i.e., pure, bindings, nobinds, and codemsg, the one which produces the best results
is the latter. Among the three of them which take the minimization history into
account—and which are more efficient in terms of specialization time—, the
best is bindings, but it sometimes does not produce as good results as codemsg.
The effects of the splitting phase are clear in many benchmarks, showing that, in
effect, local equivalence does not imply global equivalence. Finally, for datetime,
flattrees and mmatrix 2, residual is able to further reduce code size.

7.2 The Cost of Minimization

In Table 2 we can observe the cost, in terms of specialization time, introduced
by minimization, expressed in milliseconds. The (Total) time of the whole spe-
cialization process is shown, including the time taken by the partial evaluation
(Analysis), minimization (Minim), and code generation (Codegen) steps. A new
minimization criteria is introduced, nomin, showing the time employed by par-
tial evaluation without minimization. The Slowdown column shows the cost of
performing this minimization post-processing.

Interestingly, the table shows that when minimization is employed, the code
generation phase takes less time in most cases, since fewer versions need to be
generated. This lowers the burden introduced by minimization post-processing.
However, even in the worst case the slowdown introduced is reasonable (1.85).
As expected, using specialization history makes minimization faster than just
applying the definition of structural equivalence. Given the fact that employing
structural equivalence generates fewer versions than other criteria based on the
specialization history, the codemsg criterion emerges as a very interesting one.
Also, for the residual minimization criterion, the time spent in code generation
is greater than for the rest of criteria, since it requires deciding which external
successes need to be residualized.

7.3 Benefits of Minimization in Runtime

Table 3 shows how specialized programs behave in terms of runtime. Benchmark
programs having residualized external predicates (for the residual minimization

Table 3. Benchmarks (Speedup)

Benchmark
PE
Time

Speedup
Pure No Binds Bindings CodeMsg Residual

datetime* 167.77 1.01 1.02 1.01 1.01 1.01

flattrees* 81.39 1.03 1.01 1.01 1.03 1.01

freeof 246.96 1.04 1.04 1.05 1.04 1.05

mmatrix 2* 1920.11 1.02 1.02 1.02 1.02 1.00

nrev 38 141.38 1.20 1.18 1.18 1.19 1.19

qsort 33 457.33 1.05 1.04 1.04 1.05 1.04

sublists 15501.44 1.00 1.00 1.00 1.00 1.00



96 C. Ochoa, G. Puebla, and M. Hermenegildo

criterion) are marked with * in the table. Column PE Time shows the absolute
run-time for the partially evaluated program. The rest of the columns show the
speedup achieved for the minimized programs (for each different minimization
criteria) w.r.t. PE Time. As can be seen in the table, in most benchmarks a
small speedup is achieved (1.00 – 1.20), and no slowdown is produced in any
case. As expected, in the case of programs with residualized external predi-
cates, the speedup achieved is usually smaller than for the other minimization
criteria.

8 Discussion and Related Work

The problem of superfluous polyvariance has been tackled in the context of ab-
stract multiple specialization in [18, 16], and in the context of partial evaluation
of normal logic programs in [9]. This work presents a unifying view under which
the minimization problems in both contexts are isomorphic.

The work in [9], reflected in the ECCE [10] partial evaluator, uses an inter-
nal table of safe builtins which basically correspond to instantiation and type
tests and which are guaranteed (1) not to generate any bindings, and (2) to
be deterministic. The minimization phase then would only allow collapsing two
predicates in the same version if their characteristic trees are quasi-isomorphic
and all the builtins executed are listed in the table of pure predicates.

The approach presented herein, and implemented in the Ciao system prepro-
cesor, CiaoPP [4], can handle any external predicate, including non-safe builtins,
and the notion of isomorphic external predicates can be satisfied for builtins
which generate bindings and which are non-deterministic. Also, there is no need
for a static table of builtins. Additionally, the technique automatically applies
to any external predicates, for example other modules written by the user.

To the best of our knowledge, this work presents the first experimental evalua-
tion of the benefits of post-minimization in partial deduction. We have compared
several criteria, with different cost and potential benefit. We have also applied
directly the definition of structural equivalence and discovered that it is also ap-
plicable in practice, in addition to the other criteria based on the specialization
history. Finally, we have proposed a criteria which allows residualizing external
calls. The experiments show that it is also applicable in practice and provides
some further program reduction.

Acknowledgments

The authors would like to thank Michael Leuschel and John Gallagher for useful
discussions. This work was funded in part by the Information Society Technolo-
gies programme of the European Commission, Future and Emerging Technolo-
gies under the IST-2001-38059 ASAP project and by the Spanish Ministry of
Science and Education under the MCYT TIC 2002-0055 CUBICO project. M.
Hermenegildo is also supported by the Prince of Asturias Chair in Information
Science and Technology at UNM.



Removing Superfluous Versions in Polyvariant Specialization 97

References

1. J. Gallagher. A system for specialising logic programs. Technical Report TR-91-32,
University of Bristol, November 1991.

2. J. Gallagher and M. Bruynooghe. The derivation of an algorithm for program
specialisation. New Generation Computing, 9(1991):305–333, 1991.

3. J.P. Gallagher. Tutorial on specialisation of logic programs. In Proc. of PEPM’93,
pages 88–98. ACM Press, 1993.

4. M. Hermenegildo, F. Bueno, G. Puebla, and P. López-Garćıa. Program Analysis,
Debugging and Optimization Using the Ciao System Preprocessor. In 1999 ICLP,
pages 52–66. MIT Press, Nov 1999.

5. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

6. M. Leuschel. Ecological partial deduction: Preserving characteristic trees without
constraints. In Proc. of LOPSTR’95, LNCS 1048, pages 1–16. Springer, 1995.

7. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial
deduction: Control issues. TPLP, 2(4 & 5):461–515, July & September 2002.

8. M. Leuschel and B. Martens. Global control for partial deduction through charac-
teristic atoms and global trees. In 1996 Dagstuhl Seminar on Partial Evaluation,
LNCS 1110, pages 263–283, Schloß Dagstuhl, 1996.

9. M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and poly-
variance in partial deduction of normal logic programs. ACM TOPLAS, 20(1):208–
258, 1998.

10. Michael Leuschel. The ecce partial deduction system and the dppd library of
benchmarks. Obtainable via http://www.ecs.soton.ac.uk/~mal, 1996-2002.

11. Michael Leuschel. Advanced Techniques for Logic Program Specialisation. PhD
thesis, K.U. Leuven, May 1997.

12. Michael Leuschel and Danny De Schreye. Constrained partial deduction and the
preservation of characteristic trees. New Generation Computing, 16:283–342, 1998.

13. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The
Journal of Logic Programming, 11:217–242, 1991.

14. J.W. Lloyd. Foundations of Logic Programming. Springer, 2nd Ext. Ed., 1987.
15. G. Puebla, E. Albert, and M. Hermenegildo. Efficient Local Unfolding with An-

cestor Stacks for Full Prolog. In Proc. of LOPSTR’04, pages 149–165. Springer
LNCS 3573, 2005.

16. G. Puebla and M. Hermenegildo. Implementation of Multiple Specialization in
Logic Programs. In Proc. of PEPM’95, pages 77–87. ACM Press, June 1995.

17. G. Puebla and M. Hermenegildo. Abstract Multiple Specialization and its Appli-
cation to Program Parallelization. JLP, 41(2&3):279–316, November 1999.

18. W. Winsborough. Multiple Specialization using Minimal-Function Graph Seman-
tics. Journal of Logic Programming, 13(2 and 3):259–290, July 1992.



Extension of Type-Based Approach to
Generation of Stream-Processing Programs by
Automatic Insertion of Buffering Primitives

Kohei Suenaga1, Naoki Kobayashi2, and Akinori Yonezawa3

1 University of Tokyo
kohei@yl.is.s.u-tokyo.ac.jp

2 Tohoku University
koba@kb.ecei.tohoku.ac.jp

3 University of Tokyo
yonezawa@yl.is.s.u-tokyo.ac.jp

Abstract. In our previous paper, we have proposed a framework for au-
tomatically translating tree-processing programs into stream-processing
programs. However, in writing programs that require buffering of input
data, a user has to explicitly use buffering primitives which copy data
from input stream to memory or copy constructed trees from memory to
an output stream. Such explicit insertion of buffering primitives is often
cumbersome and worsens the readability of the program. We overcome
the above-mentioned problems by developing an algorithm which, given
any simply-typed tree-processing program, automatically inserts buffer-
ing primitives. The resulting program is guaranteed to be well-typed un-
der our previous ordered-linear type system, so that the program can be
further transformed into an equivalent stream-processing program using
our previous framework.

1 Introduction

There are two ways for processing tree-structured data such as XML [1]: one is to
manipulate data using a tree representation (e.g., DOM API [16], XDuce [4, 5],
CDuce [15] in the case of XML processing), and the other is to use a stream
representation (e.g., SAX, in the case of XML processing). Since large tree-
structured data are typically stored in files using the stream representation,
the former approach requires that the data be first loaded into memory and
converted into the tree representation. On the other hand, the former approach
has an advantage that it is easier to read and write programs.

To take the best of both approaches, in our previous paper [7], we have pro-
posed a framework in which a user can write a tree processing program, which is
then automatically transformed into an equivalent stream processing program.
For example, consider the programs in Figure 1. A user writes the tree-processing
program, which takes a binary tree t as an input, and returns the tree whose
leaf values are incremented by 1. A system then automatically transforms the

P.M. Hill (Ed.): LOPSTR 2005, LNCS 3901, pp. 98–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Type-Based Insertion of Buffering Primitives 99

node

1

5 3

2

6 4

leaf leaf leafnode1 5 3 node leaf leaf leafnode2 6 4

parse

f

g

unparse

Tree-Processing Program:
fix (f, t, case t of leaf x ⇒ leaf (x + 1) | node x1 x2 ⇒ node (f x1) (f x2))
Stream-Processing Program:
fix(g, t, case read() of

leaf ⇒ let x = read() in write leaf ;write; (x + 1)
| node ⇒ write node; g (); g ())

Fig. 1. Tree-processing and stream-processing. fix (f, x, M) is a function that takes an
argument to x and evaluates M in which the whole function is referred to by f .

program into the stream-processing program, which is more efficient for data
stored in the stream representation since there is no need to construct trees on
memory. We have implemented a generator of XML stream processing programs
based on the framework, and confirmed that the approach works well for certain
programs [6].

Our previous framework [7], however, imposes a severe restriction on tree-
processing programs. The framework can deal with only programs that access
each node of an input tree only once, in the depth-first, left-to-right order. For
example, consider the program swap deep′ in Figure 2. It swaps the children of
nodes whose depth is more than n. Stream-processing would be effective since
the program traverses the input tree mostly in the depth-first, left-to-right or-
der, but our previous framework simply rejects it. In principle, a user can write
any tree-processing by explicitly inserting primitives for copying data from an
input stream to memory or copying constructed trees from memory to an output
stream (both of which are called buffering primitives below). For example, one
can rewrite the program swap deep′ to the program swap deep by inserting a
buffering primitive s2m, which copies data from the input stream to memory.
Our previous framework can then be applied to obtain a stream-processing pro-
gram, which constructs only deep sub-trees on memory. Such explicit insertion
of buffering primitives is, however, often cumbersome and worsens the readabil-
ity of the program. Moreover, whether a program conforms to the access order
restriction is checked by using a static type system with ordered linear types
(inspired by ordered linear logic [12]), so a programmer has to understand the
type system to insert buffering primitives in appropriate places.



100 K. Suenaga, N. Kobayashi, and A. Yonezawa

Ill-typed tree-processing program:

swap deep′ def≡
let swap =

fix (f, t, case t of leaf x ⇒ leaf x | node x1 x2 ⇒ node (f x2) (f x1)) in
λn.fix (g, t,

if n = 0 then swap t
else case t of

leaf x ⇒ leaf x
| node x1 x2 ⇒ node (g (n − 1) x1) (g (n − 1) x2))

Well-typed tree-processing program:

swap deep
def≡

let swap =
fix (f, t,

mcase t of mleaf x ⇒ leaf x | mnode x1 x2 ⇒ node (f x2) (f x1)) in
λn.fix (g, t,

if n = 0 then swap (s2m t)
else case t of

leaf x ⇒ leaf x
| node x1 x2 ⇒ node (g (n − 1) x1) (g (n − 1) x2))

Resulting stream-processing program:

swap deep strm
def≡

let swap =
fix (f, t,mcase t of mleaf x ⇒ write leaf ; write x

| mnode x1 x2 ⇒ write node; f (); f ()) in
λn.fix (g, t,

if n = 0 then swap (s2m t)
else case read() of

leaf ⇒ let x = read() in write leaf ; write x
| node ⇒ write node; g (n − 1) (); g (n − 1) ())

Fig. 2. A program which swaps children of nodes whose depth is more than n

We overcome the above-mentioned problems by developing an algorithm
which, given any simply-typed tree-processing program (without the access
order restriction), automatically inserts buffering primitives. The resulting pro-
gram is guaranteed to be well-typed under our previous ordered-linear type sys-
tem [7], so that the program can be further transformed into an equivalent
stream-processing program using our previous framework [7].

For example, the program swap deep′ in Figure 2, which is ill-typed in the
type system in [7], is translated into the program swap deep in Figure 2 using the
algorithm presented in this paper. As swap deep is well-typed in the type system
of [7], it can be translated into a stream-processing program swap deep strm.

The rest of the paper is organized as follows. In Section 2, we briefly review our
previous framework [7]. Section 3 presents non-deterministic rules for inserting



Type-Based Insertion of Buffering Primitives 101

buffering primitives and proves the soundness of the rules. Then, we present
a deterministic algorithm for inserting buffering primitives. We discuss related
work in Section 6, and conclude in Section 7.

2 Language and Type System for Tree-Processing

This section gives an overview of our previous framework for generation of
stream-processing programs [7]. The source language is a call-by-value λ-calculus
extended with binary trees. The framework can easily be extended to deal with
XML [6].

2.1 Language

Figure 3 gives the syntax of the tree-processing language. The operational se-
mantics is summarized in the full version [14].

The meta-variables x and i range over the sets of variables and integers
respectively. The first line of M gives standard constructs for the λ-calculus.
fix (f, x, M) is a function that takes an argument to x and evaluates M . The
whole function is referred to by f in M . We write λx.M for fix (f, x, M) when
f is not free in M . We write let x = M1 in M2 for (λx.M2) M1. Especially, if
M2 contains no free occurrence of x, we write M1; M2 for it.

The next line gives two kinds of tree constructors. leaf and node are construc-
tors for non-buffered trees, which are intended to be represented in the stream
format, and can be accessed only in a restricted manner. mleaf and mnode are
constructors for buffered trees, which are stored in memory and can be accessed
in an arbitrary manner.

The third line gives primitives for changing tree representations: The primitive
s2m converts non-buffered trees to buffered trees, and m2s converts buffered
trees to non-buffered trees. For a technical reason, we also have a construct
letbuf x = M1 in M2, which is operationally the same as (λx.M2)M1.

The last two lines of the definition of terms give destructors for the two
versions of trees.

Terms, values and evaluation contexts:

M (terms) ::= i | fix (f, x,M) | x | M1 M2 | M1 + M2

| leaf M | node M1 M2 | mleaf M | mnode M1 M2

| s2m | m2s | letbuf x = M1 in M2

| case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2

| mcase y of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2

τ (types) ::= Int | Treed | τ1 → τ2

d (uses) ::= 1 | ω | +

Fig. 3. The syntax of the tree-processing language and types



102 K. Suenaga, N. Kobayashi, and A. Yonezawa

2.2 Type System

As mentioned in Section 1, we use an ordered linear type system to ensure that
input trees are accessed in the appropriate order (i.e., the left-to-right, depth-first
order).

The syntax of types is given in Figure 3. Int is the type of integers and τ1 → τ2
is the type of functions from τ1 to τ2. We have three kinds of tree types. Treeω

is the type of buffered trees. Tree1 and Tree+ are the types of input trees and
output trees respectively.

A type judgment of our type system is Γ | Δ " M : τ . Here, Γ is a usual type
environment, which is a mapping from a finite set of variables to types. We,
however, impose a restriction that the codomain of Γ does not contain Tree1 or
Tree+. Δ is an ordered linear type environment, which is a sequence of bindings
x1 : Tree1, . . . , xn : Tree1 where x1 · · ·xn are different from each other. That
environment specifies not only that x1, . . . , xn are bound to input trees, but also
that each of x1, . . . , xn must be accessed exactly once in this order and that
each of the subtrees bound to x1, . . . , xn must be accessed in the left-to-right,
depth-first order.

Figure 4 gives key typing rules. For the full rules, see the full version [14].

Γ | Δ � M : Int

Γ | Δ � leaf M : Tree+ (T-Leaf)

Γ | Δ1 � M1 : Tree+ Γ | Δ2 � M2 : Tree+

Γ | Δ1, Δ2 � node M1 M2 : Tree+ (T-Node)

Γ | Δ � M : Int

Γ | Δ � mleaf M : Treeω (T-MLeaf)

Γ | Δ1 � M1 : Treeω Γ | Δ2 � M2 : Treeω

Γ | Δ1, Δ2 � mnode M1 M2 : Treeω
(T-MNode)

Γ, x : Int | Δ � M1 : τ
Γ | x1 : Tree1, x2 : Tree1, Δ � M2 : τ

Γ | y : Tree1, Δ � case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2 : τ
(T-Case)

Γ, y : Treeω, x : Int | Δ � M1 : τ
Γ, y : Treeω, x1 : Treeω, x2 : Treeω | Δ � M2 : τ

Γ, y : Treeω | Δ � mcase y of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2 : τ
(T-MCase)

Fig. 4. A part of typing rules of Γ | Δ � M : τ

2.3 Translation Algorithm

If a program is well-typed in the type system presented above, the program can
be translated into an equivalent stream-processing program using a straight-
forward algorithm. Figure 5 shows the highlight of the algorithm A, which



Type-Based Insertion of Buffering Primitives 103

A(leaf M) = write(leaf);write(A(M))
A(node M1 M2) = write(node); A(M1); A(M2)
A(case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2) =

case read() of leaf ⇒ let x = read() in A(M1)
| node ⇒ [()/x1, ()/x2]A(M2)

Fig. 5. Translation algorithm

converts tree constructors into stream output operations, and tree destructors
into stream input operations. For other term constructors, A simply works as
a homomorphism; For example, A(M1 + M2) = A(M1) +A(M2). The program
swap deep strm in Figure 2 is obtained from swap deep by using A.

The definition of stream-processing language and a proof of the correctness
of the algorithm are given in our previous paper [7].

3 Non-deterministic Specification for Automatic
Insertion of Buffering Primitives

Now we discuss a method for automatically inserting s2m and m2s . Let us
write Γ "λ→ M : τ for the type judgment for the usual simply-typed λ-calculus
(see the full version [14]). The goal is to transform any program M such that
∅ "λ→ M : Tree → Tree into an equivalent program M ′ such that ∅ | ∅ " M ′ :
Tree1 → Tree+, by inserting s2m and m2s into M .

We first define correct transformations in a declarative and non-deterministic
manner. We introduce a new judgment Γ | Δ " M � M ′ : τ . The judgment
means that (1) M and M ′ are equivalent if we ignore the representation of trees,
and (2) Γ | Δ " M ′ : τ holds.

Definition 1. Γ | Δ " M � M ′ : τ is the least relation that satisfies the rules
in Figure 6.

For example, the rule Tr-StreamToMem says that we can transform M under
the assumption that x is an input tree by first inserting the conversion s2m(x),
and then transforming M under the assumption that x is a buffered tree.

Note that the rules are non-deterministic in the sense that there may be
more than one valid transformations for each source program M . We present an
algorithm that choose one from possible translations.

The following theorem guarantees the soundness of the judgment.

Theorem 1 (Soundness of Γ | Δ " M � M ′ : τ). If Γ | Δ " M � M ′ : τ
holds, then Γ | Δ " M ′ : τ and M ≡ erase(M ′).

Here, erase(M ′) is the term obtained by removing s2m and m2s , and replac-
ing constructors and destructors for buffered trees with those for non-buffered
trees. The first property of the lemma means that the result of the transla-
tion is well-typed (so that our previous framework can be applied to generate a



104 K. Suenaga, N. Kobayashi, and A. Yonezawa

Γ | ∅ � i � i : Int (Tr-Int)

Γ | Δ1 � M1 � M ′
1 : Int Γ | Δ2 � M2 � M ′

2 : Int

Γ | Δ1, Δ2 � M1 + M2 � M ′
1 + M ′

2 : Int
(Tr-Plus)

Γ, x : τ | ∅ � x � x : τ (Tr-Var1)

Γ | x : Tree1 � x � x : Tree1 (Tr-Var2)

f : τ1 → τ2, Γ, x : τ1 | ∅ � M � M ′ : τ2

Γ | ∅ � fix (f, x,M) � fix (f, x,M ′) : τ1 → τ2
(Tr-Fix1)

f : Tree1 → τ, Γ | x : Tree1 � M � M ′ : τ

Γ | ∅ � fix (f, x,M) � fix (f, x,M ′) : Tree1 → τ
(Tr-Fix2)

Γ | Δ1 � M1 � M ′
1 : τ ′ → τ Γ | Δ2 � M2 � M ′

2 : τ ′

Γ | Δ1, Δ2 � M1 M2 � M ′
1 M ′

2 : τ
(Tr-App)

Γ | Δ � M � M ′ : Int

Γ | Δ � leaf M � leaf M ′ : Tree+ (Tr-Leaf1)

Γ | Δ � M � M ′ : Int

Γ | Δ � leaf M � mleaf M ′ : Treeω
(Tr-Leaf2)

Γ | Δ1 � M1 � M ′
1 : Tree+ Γ | Δ2 � M2 � M ′

2 : Tree+

Γ | Δ1, Δ2 � node M1 M2 � node M ′
1 M ′

2 : Tree+ (Tr-Node1)

Γ | Δ1 � M1 � M ′
1 : Treeω Γ | Δ2 � M2 � M ′

2 : Treeω

Γ | Δ1, Δ2 � node M1 M2 � mnode M ′
1 M ′

2 : Treeω (Tr-Node2)

Γ, x : Int | Δ � M1 � M ′
1 : τ Γ | x1 : Tree1, x2 : Tree1, Δ � M2 � M ′

2 : τ

Γ | y : Tree1, Δ � case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2

� case y of leaf x ⇒ M ′
1 | node x1 x2 ⇒ M ′

2 : τ
(Tr-Case1)

Γ, y : Treeω, x : Int | Δ � M1 � M ′
1 : τ

Γ, y : Treeω, x1 : Treeω, x2 : Treeω | Δ � M2 � M ′
2 : τ

Γ, y : Treeω | Δ � case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2

� mcase y of mleaf x ⇒ M ′
1 | mnode x1 x2 ⇒ M ′

2 : τ

(Tr-Case2)

Γ, x : Treeω | Δ � M � M ′ : τ

Γ | x : Tree1, Δ � M � letbuf x = s2m(x) in M ′ : τ
(Tr-StreamToMem)

Γ | Δ � M � M ′ : Treeω

Γ | Δ � M � m2s(M ′) : Tree+ (Tr-MemToStream)

Fig. 6. Rules for the judgment Γ | Δ � M � M ′ : τ



Type-Based Insertion of Buffering Primitives 105

stream-processing program). The second property states that the semantics of
the program is preserved by the transformation.

The following lemma guarantees that there is at least one valid transformation
for any simply-typed program.

Lemma 1. If Γ ′ "λ→ M : τ then there exist Γ, Δ, M ′ and τ ′ such that Γ | Δ "
M � M ′ : τ ′ and Γ ′ = eraseuse(Γ ∪Δ) and τ = eraseuse(τ ′).

Here, eraseuse(·) removes uses (+, 1, ω) from types.
We can easily check that the relation Γ | Δ " M � M ′ : τ contains a

transformation that is optimal (in the sense that the resulting program copies
as few trees as possible to memory) among those preserving typing and the
structure of the source program. To formally state that property, let us write
M � M ′ if M ′ is obtained from M by inserting letbuf x = s2m(x) in and
m2s and/or replacing some occurrences of leaf , node, and case with mleaf ,
mnode, and mcase. The following theorem states that any transformation that
performs only such replacement and preserves types can be obtained by the
transformation rules in Section 3, so that an optimal transformation can also be
obtained.

Theorem 2 (Completeness of Γ | Δ " M � M ′ : τ). If Γ "λ→ M : Tree →
Tree and Γ | ∅ " M ′ : Tree1 → Tree+ and M � M ′, then Γ | ∅ " M � M ′ :
Tree1 → Tree+.

Note that if we allow more aggressive transformation, we may obtain a more
efficient program. For example, consider the program

let copy tree =fix(f, t, case t of leaf x ⇒ leaf x
| node x1 x2 ⇒ node (f x1) (f x2)) in

λt.case t of leaf x⇒ leaf x
| node x1 x2⇒node (node (copy tree x1) (copy tree x1)) (copy tree x2).

If we allow code duplication, we would have the following program:

let copy tree s = fix(f, t, case t of leaf x ⇒ leaf x
| node x1 x2 ⇒ node (f x1) (f x2)) in

let copy tree m = fix(f, t,mcase t of mleaf x ⇒ leaf x
|mnode x1 x2 ⇒ node (f x1) (f x2)) in

λt.case t of leaf x ⇒ leaf x
| node x1 x2 ⇒

node (letbuf x1 =s2m(x1) in node (copy tree m x1) (copy tree m x1))
(copy tree s x2).

The program above does not buffer x2, while any programs derived by Γ | Δ "
M � M ′ : τ buffers x2 because f must have type Treeω → Tree+. It is one of
our future work to deal with such transformation.



106 K. Suenaga, N. Kobayashi, and A. Yonezawa

4 Automatic Insertion Algorithm

The transformation rules presented in the previous section are non-deterministic
in the sense that there may be more than one possible M ′ and τ that satisfy
Γ | Δ " M � M ′ : τ . We next present an algorithm for choosing one among
those possibilities.

The algorithm consists of two sub-algorithms I and P . Given a program of
type Tree → Tree, I inserts s2m and generates an intermediate program of
type Tree1 → Treeω. P takes the intermediate program as an input, inserts
m2s , and generates a program of type Tree1 → Tree+.

We focus on the algorithm I below, since P is fairly straightforward. P is
briefly discussed at the end of this section.

4.1 Algorithm I
We first give an overview of the algorithm I. We shall introduce a new form
of transformation judgment Θ " M � M ′ : τ . Θ, called a semi-ordered type
environment, is a combination of a type environment Γ and Δ. The rules for
Θ "M � M ′ : τ is more deterministic than Γ | Δ " M � M ′ : τ . In fact, there
is only one transformation rule for each syntactic form of M . Using the new
transformation rules, we can construct an algorithm I1, which, given Θ, M , and
τ that may contain use variables to denote unknown uses, outputs M ′ and C,
where C is a set of constraints on the use variables such that θΘ " M � θM ′ : θτ
holds if the substitution θ satisfies C. Using I1, the algorithm I works as follows.

I(M) = let (M ′, C) = I1(∅, M,Tree1 → Treeω) in
let θ = solve(C) in θM ′

Now let us look at the construction of I1 more closely. We construct I1 in
three steps. First, we introduce a judgment Θ "I M � M ′ : τ by combining Γ
and Δ of Γ | Δ " M � M ′ : τ . Then, we obtain Θ " M � M ′ : τ by deriving
syntax-directed rules from Θ "I M � M ′ : τ . Finally, we derive I1 from the
rules for Θ "M � M ′ : τ .

We first define semi-ordered type environments. The semi-ordered type en-
vironment is necessary since at the time of running I1, we cannot tell which
variable should be put into an ordered linear type environment Δ and which
should be put into an ordinary type environment Γ .

Definition 2. The use of a type τ , written |τ |, is defined by:

|Int| = ω |τ1 → τ2| = ω |Treed| = d

Below, we use the total order ≥ on uses, defined by ω ≥ 1.

Definition 3 (Semi-ordered type environment). A semi-ordered type en-
vironment, represented by Θ, is a sequence x1 : τ1, . . . , xn : τn where each xi is
distinct from each other and |τi| ≥ |τj | whenever i ≤ j. We write x �Θ y if x
occurs before y in Θ.



Type-Based Insertion of Buffering Primitives 107

coerceΘ⇒Θ(M)=M

coerce(Θ1,x:Tree1,Θ2)⇒(Θ1,x:Treeω ,Θ′
2)(M)=(letbuf x=s2m(x) in coerceΘ2⇒Θ′

2(M))

Fig. 7. Definition of coerceΘ⇒Θ′
()

In the definition of Θ " M � M ′ : τ , we use two predicates, Θ1 # Θ2 and
merge(Θ, Θ1, Θ2). Θ1 # Θ2 means that Θ1 is obtained by replacing some of
Tree1 in Θ2 with Treeω.

Definition 4. We write τ1 # τ2 when either τ1 = τ2 or τ1 = Treeω and τ2 =
Tree1. The relation is pointwise extended to that on semi-ordered environment;
x1 : τ1, . . . , xn : τn # x1 : τ ′

1, . . . , xn : τ ′
n iff τi # τ ′

i for every i ∈ {1, . . . , n}.

Intuitively, merge(Θ, Θ1, Θ2) defined below means that if variables can be ac-
cessed according to Θ, then they can be first accessed according to Θ1 and
then according to Θ2. For example, if Θ = x : Treeω, y : Tree1, z : Tree1,
then merge(Θ, y : Tree1, (x : Treeω, z : Tree1)) holds, but merge(Θ, z : Tree1,
(x : Treeω, y : Tree1)) does not, since the latter violates the condition that y
should be read first.

Definition 5 (Merge of semi-ordered type environments). Θ is a merge
of Θ1 and Θ2, represented by merge(Θ, Θ1, Θ2), if and only if the following
properties are satisfied:

(1) dom(Θ1) ∪ dom(Θ2) ⊆ dom(Θ) and Θ1(x) = Θ(x) for all x ∈ dom(Θ1) and
Θ2(y) = Θ(y) for all y ∈ dom(Θ2)

(2) x �Θ1 y =⇒ x �Θ y and x �Θ2 y =⇒ x �Θ y
(3) x ∈ dom(Θ)\(dom(Θ1) ∪ dom(Θ2)) =⇒ |Θ(x)| ≥ ω
(4) x ∈ dom(Θ1) ∩ dom(Θ2) =⇒ |Θ(x)| ≥ ω
(5) If y ∈ dom(Θ1), x ∈ dom(Θ2), and x �Θ y, then |Θ(x)| ≥ ω.

τ = Θ(x) ∀y ∈ dom(Θ)\{x}.|Θ(y)| ≥ ω

Θ �I x � x : τ
(Tr-Var’)

f : τ1 → τ2, Θ, x : τ1 �I M � M ′ : τ2 ∀y ∈ dom(Θ).|Θ(y)| ≥ ω

Θ �I fix (f, x,M) � fix (f, x,M ′) : τ1 → τ2
(Tr-Fix’)

Θ1 �I M1 � M ′
1 : Treeω Θ2 �I M2 � M ′

2 : Treeω merge(Θ, Θ1, Θ2)

Θ �I node M1 M2 � mnode M ′
1 M ′

2 : Treeω

(Tr-Node’)

Θ′ �I M � M ′ : τ Θ′ � Θ

Θ �I M � coerceΘ⇒Θ′
(M ′) : τ

(Tr-StreamToMem’)

Fig. 8. A part of rules for Θ �I M � M ′ : τ



108 K. Suenaga, N. Kobayashi, and A. Yonezawa

By the well-formedness condition of semi-ordered type environments, Θ1 and Θ2
can be decomposed into Γ1, Δ1 and Γ2, Δ2, where Γi is a sequence of bindings
on types of use ω and Δi is a linear type environment. Thus, the conditions of
merge(Θ, Θ1, Θ2) above essentially mean that Θ is of the form Γ, Δ1, Δ2 where
Γ is obtained by merging Γ1 and Γ2 and adding extra bindings on types of
use ω.

Figure 8 shows a part of rules for Θ "I M � M ′ : τ . The definition of
coerceΘ⇒Θ′

(M), which is used in the rule Tr-StreamToMem’, is given in Fig-
ure 7. It inserts s2m for each x such that Θ(x) = Tree1 and Θ′(x) = Treeω.
Note that coerceΘ⇒Θ′

(·) is an operation on terms, so that it is reduced in the pro-
gram transformation phase (when Θ and Θ′ have been completely determined),
not when the program is executed.

Next, we introduce a judgment Θ " M � M ′ : τ .

Definition 6. The relation Θ " M � M ′ : τ is the least relation closed under
the rules in Figure 9.

The rules in Figure 9 are syntax-directed version of the rules in Fig-
ure 8. For example, Tr-SD-Node corresponds to applications of the rule
Tr-StreamToMem’, followed by an application of Tr-Node’.

The following theorems describe soundness and completeness of Θ " M �
M ′ : τ with respect to Γ | Δ " M � M ′ : τ :

Theorem 3 (Soundness of Θ " M � M ′ : τ). If Θ " M � M ′ : τ holds,
then there exist Γ and Δ that satisfy Γ | Δ " M � M ′ : τ and Θ = Γ, Δ.

Theorem 4 (Completeness of Θ " M � M ′ : τ). Suppose that Γ |
Δ " M � M ′ : τ is derived without using Tr-Leaf1, Tr-Node1 and
Tr-MemToStream. Then, Γ, Δ "M � M ′ : τ .

Based on the rules in Figure 9, we construct I1 in Figure 10 that takes Θ, M
and τ as input and returns the result of translation M ′ and constraints C. C
consists of inequalities between uses and equalities between types. It is obtained
by reading the rules in Figure 9 in a bottom-up manner. In Figure 10, rename(Θ)
returns a pair of the type environment obtained by replacing the uses variables
occurs in Θ with fresh use variables, and a set of constraints for the renamed
type environment being well-formed (i.e.,|Θ(xi)| ≥ |Θ(xj)| for any xi �Θ xj .) By
abuse of notations, we write Θ1 # Θ2 and merge(Θ, Θ1, Θ2) for the constraints
on uses required for Θ1 # Θ2 and merge(Θ, Θ1, Θ2) to hold respectively. The
function typeof (N) returns the simple type of N .1

The following theorem states soundness of I1.

Theorem 5. Suppose I1(Θ, M, τ) = M ′, C. If θ is a solution of C then θΘ "
M � θM ′ : θτ holds.
1 Here, we assume that the type reconstruction algorithm for ∅ �λ→ M : Tree → Tree

is applied, and that the type of each subterm has been already determined. The
variables whose types are not uniquely determined are not accessed, so we can safely
assume that typeof () returns Int for those variables.



Type-Based Insertion of Buffering Primitives 109

∀y ∈ dom(Θ′)\{x}. |Θ′(y)| ≥ ω Θ′ � Θ τ = Θ′(x)

Θ � x � coerceΘ⇒Θ′
(x) : τ

(Tr-SD-Var)

∀x ∈ dom(Θ′). |Θ′(x)| ≥ ω Θ′ � Θ

Θ � i � coerceΘ⇒Θ′
(i) : Int

(Tr-SD-Int)

Θ′
1 � M1 � M ′

1 : Int Θ′
2 � M2 � M ′

2 : Int
Θ′

1 � Θ1 Θ′
2 � Θ2 merge(Θ, Θ1, Θ2)

Θ � M1 + M2 � coerceΘ1⇒Θ′
1(M ′

1) + coerceΘ2⇒Θ′
2(M ′

2) : Int
(Tr-SD-Plus)

f : τ1 → τ2, Θ
′, x : τ1 � M � M ′ : τ2

f : τ1 → τ2, Θ
′, x : τ1 � f : τ1 → τ2, Θ, x : τ ′

1 ∀y ∈ dom(Θ). |Θ(y)| ≥ ω

Θ � fix (f, x,M) � fix (f, x, coerce (f :τ1→τ2,Θ,x:τ1)⇒(f :τ1→τ2,Θ′,x:τ ′
1)(M ′)) : τ1 → τ2

(Tr-SD-Fix)

Θ′
1 � M1 � M ′

1 : τ1 → τ2 Θ′
2 � M2 � M ′

2 : τ1

Θ′
1 � Θ1 Θ′

2 � Θ2 merge(Θ, Θ1, Θ2)

Θ � M1 M2 � coerceΘ1⇒Θ′
1(M ′

1) coerceΘ2⇒Θ′
2(M ′

2) : τ2
(Tr-SD-App)

Θ′ � M � M ′ : Int Θ′ � Θ

Θ � leaf M � mleaf coerceΘ⇒Θ′
(M ′) : Treeω

(Tr-SD-Leaf)

Θ′
1 � M1 � M ′

1 : Treeω Θ′
2 � M2 � M ′

2 : Treeω

Θ′
1 � Θ1 Θ′

2 � Θ2 merge(Θ, Θ1, Θ2)

Θ � node M1 M2 � mnode coerceΘ1⇒Θ′
1(M ′

1) coerceΘ2⇒Θ′
2(M ′

2) : Treeω

(Tr-SD-Node)

Θ′
1 � y � y′ : Treed Θ′

2 � M1 � M ′
1 : τ Θ′

3 � M2 � M ′
2 : τ

Θ′
1 � Θ1 Θ′

2 � x : Int, Θ2L, Θ2R Θ′
3 � Θ2L, x1 : Treed, x2 : Treed, Θ2R

merge(Θ, Θ1, (Θ2L, Θ2R)) M ′′
1 = coerce(Θ2L,Θ2R)⇒(Θ′

2\{x:Int})(M ′
1)

M ′′
2 = coerce(Θ2L,x1:Treed,x2:Treed,Θ2R)⇒Θ′

3(M ′
2)

Θ �
case y of

leaf x ⇒ M1

| node x1 x2 ⇒ M2

�
case y of

leaf x ⇒ M ′′
1

| node x1 x2 ⇒ M ′′
2

: τ

(Tr-SD-Case)

Fig. 9. Typing rules for the judgment Θ � M � M ′ : τ

Unfortunately, the converse of Theorem 5 does not hold. For example, con-
sider the program M = ((f x) + 1) + (f z). M can be transformed to
both M ′

1 = ((f x) + letbuf y = s2m(y) in 1) + (f z) and M ′
2 = (f x) +

(letbuf y = s2m(y) in 1 + (f z)) under the semi-ordered environment Θ =
f : Tree1 → Int, x : Tree1, y : Tree1, z : Tree1 by the transformation rules in
Figure 9. Only the latter derivation can, however, be derived by algorithm I1.
This is because I1(M1 + M2) divides the semi-ordered environment Θ into Θ1



110 K. Suenaga, N. Kobayashi, and A. Yonezawa

I1(Θ, x, τ ) = M, C
where Θ′, C0 = rename(Θ)

C = {|Θ′(y)| ≥ ω|y ∈ Dom(Θ′)\{x}} ∪ Θ′ � Θ
∪{τ = Θ′(x)} ∪ C0

M = coerceΘ→Θ′
(x)

I1(Θ, fix (f, x, M), τ1 → τ2) = M ′, C
where Θ′′ = f : τ1 → τ2, Θ

′, x : τ ′
1

= rename(f : τ1 → τ2, Θ, x : τ1)
C1 = well formed(Θ′′) C3 = I1(Θ

′′, M, τ ′)
C2 = Θ′′ � Θ′ C0 = {|Θ(y)| ≥ ω|y ∈ Dom(Θ)}
C = C0 ∪ C1 ∪ C2 ∪ C3

M ′ = fix (f, x, coerceΘ′→Θ′′
(M))

I1(Θ, M1 M2, τ2) = M, C
where Θ1 = Θ|FV(M1) Θ2 = Θ|FV(M2)

Θ′
1 = rename(Θ1) Θ′

2 = rename(Θ2)
C0 = well formed(Θ′

1) C1 = well formed(Θ′
2)

τ1 = typeof (M2) M ′
1, C2 = I1(Θ

′
1, M1, τ1 → τ2)

M ′
2, C3 = I1(Θ

′
2, M2, τ1) C4 = Θ′

1 � Θ1

C5 = Θ′
2 � Θ2 C6 = merge(Θ, Θ1, Θ2)

M ′′
1 = coerceΘ1→Θ′

1(M ′
1)

M ′′
2 = coerceΘ2→Θ′

2(M ′
2)

C = C0 ∪ · · · ∪ C6

I1(Θ, node M1 M2,Treed) = M, C
where Θ1 = Θ|FV(M1) Θ2 = Θ|FV(M2)

Θ′
1 = rename(Θ1) Θ′

2 = rename(Θ2)
C0 = well formed(Θ′

1) C1 = well formed(Θ′
2)

M ′
1, C2 = I1(Θ

′
1, M1,Treeω)

M ′
2, C3 = I1(Θ

′
2, M2,Treeω)

C4 = Θ′
1 � Θ1 C5 = Θ′

2 � Θ2

C6 = merge(Θ, Θ1, Θ2)

M ′′
1 = coerceΘ1→Θ′

1(M ′
1)

M ′′
2 = coerceΘ2→Θ′

2(M ′
2)

M = mnode M ′′
1 M ′′

2

C = C0 ∪ · · · ∪ C6 ∪ {d ≥ ω}

Fig. 10. A part of the automatic insertion algorithm. typeof (M) returns the type of
M inferred by the type reconstruction algorithm for Γ �λ→ M : τ .

and Θ2 in a fixed way (see Figure 10). This is not a problem from the viewpoint
of the optimality of the transformation result: for any term M ′ obtained from
M by using the rules in Figure 9, algorithm I1 generates a term M ′′ that is as
efficient as M ′. In the above example, M ′

1 is as efficient as M ′
2 (s2m(y) in both



Type-Based Insertion of Buffering Primitives 111

terms can be replaced by skip tree. See Section 5.), so that producing only M ′
1

is sufficient.
Let (M ′′, C) = I1(M). The constraints C can be reduced to a set of con-

straints on uses of the form {u1 ≥ d1, . . . , un ≥ dn}, where u1, . . . , un are dis-
tinct use variables and d1, . . . , dn are expressions contructed from use variables,
constants, and the operation max(d, d′) that takes an upper-bound of two uses d
and d′. Since d1, . . . , dn are monotonic on u1, . . . , un, we can apply the standard
algorithm [13] to obtain the least solution of C. The output of algorithm I is
the term obtained by substituting the least solution for the use variables in M ′′

and reducing coerce.

4.2 Algorithm P
We design P in a way similar to I. We first introduce a judgment Γ " M �
M ′ : τ in a syntax-directed manner. Figure 11 shows a part of the rules for
Γ " M � M ′ : τ . In the figure, τ1 #P τ2 is the least reflexive transitive
binary relation that satisfies Tree+ #P Treeω. Γ is not ordered since I already
guarantees that variables of type Tree1 are accessed in the correct order.

coerce outTreeω⇒Tree+
(M) = m2s(M)

coerce outτ⇒τ (M) = M

Γ, f : τ1 → τ2, x : τ1 � M � M ′ : τ ′
2 τ2 �P τ ′

2

Γ � fix (f, x, M) � fix (f, x, coerce outτ ′
2⇒τ2(M ′)) : τ1 → τ2

(TO-Fix)

Γ � M � M ′ : Int

Γ � mleaf M � leafd M ′ : Treed
(TO-Leaf)

Γ � M1 � M ′
1 : Treed1 Γ � M2 � M ′

2 : Treed2

Treed �P Treed1 Treed �P Treed2

M ′′
1 = coerce outTreed1⇒Treed

(M1) M ′′
2 = coerce outTreed2⇒Treed

(M2)

Γ � mnode M1 M2 � noded M ′′
1 M ′′

2 : Treed

(TO-Node)

Γ � M � M ′ : Treed Γ, x : Int � M1 � M ′
1 : τ1

Γ, x1 : Treed, x2 : Treed � M2 � M ′
2 : τ2

τ �P τ1 τ �P τ2

Γ �
cased M of

leafd x ⇒ M1

| noded x1 x2 ⇒ M2

�
cased M ′ of

leafd x ⇒ coerce outτ1⇒τ (M1)

| noded x1 x2 ⇒ coerce outτ2⇒τ (M2)

: τ

(TO-Case)

Fig. 11. A part of declarative definition of the algorithm that inserts m2s



112 K. Suenaga, N. Kobayashi, and A. Yonezawa

Based on Γ " M � M ′ : τ , we construct a sub-algorithm P1 that takes Γ , M
and τ , and returns M ′ and C where C is a set of constraints on the use variables
such that θΓ " M � θM ′ : θτ if the substitution θ satisfies C.

By combining I and P , we have an algorithm that transform any program M
such that ∅ " M : Tree → Tree into M ′ such that ∅ | ∅ " M ′ : Tree1 → Tree+.

For the definition of P , see the full version [14].

5 Post-processing to Eliminate Redundant Buffering

Our algorithm presented so far inserts s2m and m2s , which copy trees from the
input stream to memory, and from the memory to the output stream. Therefore,
for example, the identity function λx.x of type =Tree → Tree is transformed
into λx.letbuf x = s2m(x) in m2s(x), which contains redundant buffering. We
apply the following transformation rules in the post-processing phase to eliminate
such redundant buffering, before applying our previous framework [7].

letbuf x = s2m(x) in m2s(x) =⇒ copy tree(x)
letbuf x = s2m(x) in M =⇒ skip tree(x); M if x /∈ FV(M)

Here, copy tree(x) copies a tree from the input stream to the output stream
without buffering the tree, and skip tree(x) simply ignores a tree in the input
stream. For example, the program λx.letbuf x = s2m(x) in m2s(x) is replaced
by λx.copy tree(x).

6 Related Work

Nakano and Nishimura [8, 9, 10, 11] proposed a method for translating tree-
processing programs to stream-processing programs using attribute grammars
or attribute tree transducers [2]. In their method, programmers write XML pro-
cessing as an attribute grammar or an attributed tree transducer. Then, those
are composed with parsing and unparsing ones by using composition methods
such as descriptional composition [3] and translated to a grammar that directly
deals with streams. An advantage of our method is that we can deal with source
programs that involve side-effects (e.g. programs that print the value of every
leaf) while that seems difficult in their method based on attribute grammars
(since the evaluation order is important for side effects). We also believe that
our correctness proof is simpler than theirs. Comparison of the efficiency of pro-
grams generated by our method and those generated by their method is left for
future work.

7 Conclusion

We have proposed a method for automatically inserting buffering primitives into
tree-processing programs; by combining it with our previous framework, any



Type-Based Insertion of Buffering Primitives 113

simply-typed tree-processing program can automatically be transformed into an
equivalent stream-processing program. We have already implemented a proto-
type system to automatically insert buffering primitives. We plan to extend it
to implement a generator for XML stream-processing programs.

Acknowledgement

We thank members of “Programming Language Principles” group at University
of Tokyo. We are also grateful to anonymous reviewers for their comments.

References

1. T. Bray, J. Paoli, C.M.Sperberg-McQueen, and E. Maler. Extensible markup lan-
guage (XML) 1.0 (second edition). Technical report, World Wide Web Consortium,
Oct. 2000. http://www.w3.org/TR/REC-xml .

2. Z. Fülöp. On attributed tree transducers. In Acta Cybernetica, volume 5, pages
261–280, 1981.

3. H. Ganzinger and R. Giegerich. Attribute coupled grammars. In Proceedings of
the ACM SIGPLAN ’84 Symposium on Compiler Construction, 1984.

4. H. Hosoya and B. C. Pierce. XDuce: A typed XML processing language. ACM
Transactions on Internet Technology (TOIT), 3(2):117–148, 2003.

5. H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for XML. In
Proceedings of the International Conference on Functional Programming (ICFP),
pages 11–22, Sept. 2000.

6. K. Kodama. Derivation of XML stream processor based on ordered linear type.
Master’s thesis, Tokyo Institute of Technology, Mar. 2005.

7. K. Kodama, K. Suenaga, and N. Kobayashi. Translation of tree-processing pro-
grams into stream-processing programs based on ordered linear type. In Pro-
gramming Languages and Systems: Second Asian Symposium, APLAS 2004, pages
41–56, Nov. 2004.

8. K. Nakano. Composing stack-attributed tree transducers. Technical Report
METR–2004–01, Department of Mathematical Informatics, University of Tokyo,
Japan, 2004.

9. K. Nakano. An implementation scheme for XML transformation languages through
derivation of stream processors. In Programming Languages and Systems: Second
Asian Symposium, APLAS 2004, pages 74–90, Nov. 2004.

10. K. Nakano and S. Nishimura. Deriving event-based document transformers from
tree-based specifications. In M. van den Brand and D. Parigot, editors, Electronic
Notes in Theoretical Computer Science, volume 44. Elsevier Science Publishers,
2001.

11. S. Nishimura and K. Nakano. XML stream transformer generation through pro-
gram composition and dependency analysis. Science of Computer Programming,
54:257–290, Aug. 2004.

12. J. Polakow. Ordered linear logic and applications. PhD thesis, Carnegie Mellon
University, June 2001. Available as Technical Report CMU-CS-01-152.

13. J. Rehof and T. Mogensen. Tractable constraints in finite semilattices. Science of
Computer Programming, 35(2):191–221, 1999.



114 K. Suenaga, N. Kobayashi, and A. Yonezawa

14. K. Suenaga, N. Kobayashi, and A. Yonezawa. Extension of type-based ap-
proach to generation of stream-processing programs by automatic insertion of
buffering primitives. Full paper. Available from http://www.yl.is.s.u-tokyo.
ac.jp/~kohei/doc/paper/lopstr05-full.pdf .

15. V.Benzaken, G.Castagna, and A.Frisch. CDuce: An XML-centric general-purpose
language. In Proceedings of the ACM International Conference on Functional Pro-
gramming, 2003.

16. W3C. Document Object Model (DOM) Level 1 Specification, Oct. 1998.



Non-leftmost Unfolding in Partial Evaluation of
Logic Programs with Impure Predicates

Elvira Albert1, Germán Puebla2, and John P. Gallagher3

1 School of Computer Science, Complutense U. of Madrid
elvira@sip.ucm.es

2 School of Computer Science, Technical U. of Madrid
german@fi.upm.es

3 Department of Computer Science, University of Roskilde
jpg@ruc.dk

Abstract. Partial evaluation of logic programs which contain impure
predicates poses non-trivial challenges. Impure predicates include those
which produce side-effects, raise errors (or exceptions), and those whose
truth value varies according to the degree of instantiation of arguments1.
In particular, non-leftmost unfolding steps can produce incorrect results
since the independence of the computation rule no longer holds in the
presence of impure predicates. Existing proposals allow non-leftmost un-
folding steps, but at the cost of accuracy: bindings and failure are not
propagated backwards to predicates which are potentially impure. In
this work we propose a partial evaluation scheme which substantially
reduces the situations in which such backpropagation has to be avoided.
With this aim, our partial evaluator takes into account the information
about purity of predicates expressed in terms of assertions. This allows
some optimizations which are not feasible using existing partial evalua-
tion techniques. We argue that our proposal goes beyond existing ones in
that it is a) accurate, since the classification of pure vs impure is done at
the level of atoms instead of predicates, b) extensible, as the information
about purity can be added to programs using assertions without having
to modify the partial evaluator itself, and c) automatic, since (backwards)
analysis can be used to automatically infer the required assertions. Our
approach has been implemented in the context of CiaoPP, the abstract
interpretation-based preprocessor of the Ciao logic programming system.

1 Introduction and Motivation

For logic programs without impure predicates, non-leftmost unfolding is sound
thanks to the independence of the computation rule (see for example [13]).2

Unfortunately, non-leftmost unfolding poses several problems in the context of
full Prolog programs with impure predicates, where such independence does not
hold anymore. For instance, ground/1 is an impure predicate since, under LD
resolution, the goal ground(X),X=a fails whereas X=a,ground(X) succeeds with
1 The term “partial deduction” is often used when referring to partial evaluation of

pure logic programs [7]; hence we do not use it in this context.
2 However, non-deterministic unfolding of nonleftmost atoms can degrade efficiency.

P.M. Hill (Ed.): LOPSTR 2005, LNCS 3901, pp. 115–132, 2006.
© Springer-Verlag Berlin Heidelberg 2006



116 E. Albert, G. Puebla, and J.P. Gallagher

:- module(main_prog,[main/2],[]).
:- use_module(comp,[long_comp/2],[]).
:- entry main(X,a).

main(X,Y) :- problem(X,Y), q(X).

problem(a,Y):- ground(Y),long_comp(c,Y).
problem(b,Y):- ground(Y),long_comp(d,Y).

q(a).

Fig. 1. Motivating Example

computed answer X/a. Those executions are not equivalent and, thus, the inde-
pendence of the computation rule does no longer hold. As a result, given the goal
← ground(X),X=a, if we allow the non-leftmost unfolding step which binds the
variable X in the call to ground(X), the goal will succeed at specialization time,
whereas the initial goal fails in LD resolution at run-time. The above problem
was early detected [16] and it is known as the problem of backpropagation of
bindings. Also backpropagation of failure is problematic in the presence of im-
pure predicates. For instance, ← write(hello),fail behaves differently from
← fail.

However, it is well-known that non-leftmost unfolding is essential in partial
evaluation in some cases for the satisfactory propagation of static information
(see, e.g., [8]). Informally, given a program P and a goal ← A1, . . . , An, it can
happen that the leftmost atom A1 cannot be selected for unfolding due to several
circumstances. Among others, if A1 is an atom for a predicate defined in P (thus
the code is available to the partial evaluator) it can happen that i) unfolding
A1 endangers termination (for example, A1 may homeomorphically embed [11]
some selected atom in its sequence of covering ancestors), or ii) the atom A1
unifies with several clause heads (deterministic unfolding rules do not unfold
non-deterministically for atoms other than the initial query). If A1 is an atom
for an external predicate whose code is not present nor available to the partial
evaluator, it can happen that A1 is not sufficiently instantiated so as to be
executed at this moment.

Example 1. Our motivating example is the Ciao program in Fig. 1, which uses
the impure (predefined) predicate ground/1. Predicate long comp/2 is exter-
nal to the user module comp. Consider a deterministic unfolding rule and the
entry declaration in Fig 1. The unfolding rule performs an initial step and de-
rives the goal problem(X,a),q(X). Then, it cannot select the leftmost atom
problem(X,a) because its execution performs a non deterministic step.
In this situation, different decisions can be taken. a) We can stop unfolding at
this point. However, in general, it may be profitable to unfold atoms other than
the leftmost. Interesting computation rules are able to detect the above circum-
stances and “jump over” the problematic atom in order to proceed with the
specialization of another atom (in this case q(X)). We can then decide to b) un-
fold q(X) but avoiding backpropagating bindings or failure onto problem(X,a).
And the final possibility c) is to unfold q(X) while allowing backpropagation



Non-leftmost Unfolding in Partial Evaluation of Logic Programs 117

onto problem(X,a). However, this will require that some additional require-
ments hold on the atom(s) to the left of the selected one. Our main aim in this
work is to identify and characterize the conditions under which the possibility
c) above is applicable and build a partial evaluation system which can effec-
tively prove such conditions in order to perform backpropagation of bindings
and failure as much as possible.

There are several solutions in the literature (see, e.g.,[1, 2, 8, 9, 10]) which al-
low unfolding non-leftmost atoms by avoiding the backpropagation of bindings
and failure, i.e., in the spirit of possibility b). Basically, the common idea is to
represent explicitly the bindings by using unification [10] or residual case ex-
pressions [1] rather than backpropagating them (and thus applying them onto
leftmost atoms). For our example, by using unification, we can unfold q(X) and
obtain the resultant main(X,a):-problem(X,a),X=a. This guarantees that the
resulting program is correct, but it definitely introduces some inaccuracy, since
bindings (and failure) generated during unfolding of non-leftmost atoms are hid-
den from atoms to the left of the selected one. The relevant point to note is that
preventing backpropagation, by using one of the existing methods, can be a bad
idea for at least the following reasons:

1. Backpropagation of bindings and failure can lead to an early detection of
failure, which may result in important speedups. For instance, if we allow
backpropagating the binding X=a to the left atom, we get rid of the whole
(failing) computation for problem(b,a) in the residual program.

2. Backpropagation of bindings can make the profitability criterion for the left-
most atom to hold, which may result in more aggressive unfolding. In the
example, by backpropagating, we obtain the atom problem(a,a) which al-
lows a deterministic computation rule to proceed to its unfolding.

3. Backpropagation of bindings may allow improved indexing by further instan-
tiating arguments in clause heads. This is often good from a performance
point of view (see, e.g., [17]). In our example, we will obtain the clause head
main(a,a) with more indexing than main(X,a).

The bottom line is that backpropagation should be avoided only when it is really
necessary since interesting specializations can no longer be achieved when it is
disabled.

The remaining of the paper is organized as follows. The next section provides
an overview of our partial evaluation scheme. Section 3 recalls some preliminary
notions. In Sect. 4 we formalize the notion of purity at the level of atoms. Sec-
tion 5 presents the soundness conditions which allow safe backpropagation of
bindings and failure. In Sect. 6, we propose a partial evaluation scheme based
on purity assertions which are automatically inferred by backwards analysis. We
conclude in Sect. 7.

2 An Overview of Our Partial Evaluation Scheme

Automatically figuring out when bindings and/or failure can be safely backprop-
agated onto an atom whose execution potentially reaches an impure predicate



118 E. Albert, G. Puebla, and J.P. Gallagher

Program

���

�

�

�
Backwards
Analyzer

�� Program w/
Assertions

��
�

�

�

�
Partial

Evaluator
�� Partial
Evaluation

Predefined
Assertions

��

Entry Decl.

��

Fig. 2. Partial Evaluation based on Assertions and Backwards Analysis

has been considered a difficult challenge and, to our knowledge, there is no accu-
rate, satisfactory solution. Existing methods [8] are based on simple reachability
analysis. As soon as an impure predicate p/n can be reached from a predicate
q/m, also q/m is considered impure and backpropagation onto any atom A for
q/m is not allowed. Unfortunately, this notion of impurity quickly expands from
a predicate to all predicates which use it. For example, the fact that there is
a call to an impure predicate within problem/2 will avoid backpropagating the
binding for X and thus achieving the above three enumerated effects.

Figure 2 illustrates our partial evaluation scheme which is made up of three
main components. First, we propose to use assertions which establish the con-
ditions under which atoms (i.e., calls) for potentially impure predicates become
pure. The classification of pure vs impure is thus done at the level of atoms
instead of predicates, which will give us more precise results. We start from a
set of Predefined Assertions provided by the underlying system for prede-
fined predicates. Second, the role of Backwards Analyzer is to automatically
infer, from the predefined assertions, sufficient conditions under which atoms
are pure. The result is specified by extending the program, resulting in Program
with Assertions. Notice that this is a goal-independent process which can be
started in our system regardless of whether PE is performed or not. Third, and
independently from the backwards analysis process, the user can decide to par-
tially evaluate the program. To do so, an initial call has to be provided by means
of an Entry Declaration. A Partial Evaluator is executed from such program
and entry with the only consideration that, whenever a non-leftmost unfolding
step needs to be performed, it will take into account the information available
in the generated assertions. In our example, we will show that it is able to de-
tect that, in the context described by our entry, all calls to problem/2 are pure
since the second argument is always ground. This allows us to backpropagate the
binding for X and obtain the fact “main(a,a).” as partially evaluated program
which achieves the three benefits enumerated above.

3 Background

We assume some basic knowledge on the terminology of logic programming. See
for example [13] for details. Very briefly, an atom A is a syntactic construction



Non-leftmost Unfolding in Partial Evaluation of Logic Programs 119

of the form p(t1, . . . , tn), where p/n, with n ≥ 0, is a predicate symbol and
t1, . . . , tn are terms. The function pred applied to atom A, i.e., pred(A), returns
the predicate symbol p/n for A. Most real-life Prolog programs use predicates
which are not defined in the program (module) being developed. Thus, predi-
cates are classified into internal and external. Internal procedures are defined in
the current program (module) and we assume that its code is available to the
partial evaluator, whereas external predicates are not present. Examples of ex-
ternal predicates include the traditional “built-in” (predefined) predicates, such
as constraints, basic input/output facilities (e.g., open). We will also consider
as external predicates those defined in a different module, procedures written in
another language, etc.

A clause is of the form H ← B where its head H is an atom and its body
B is a conjunction of atoms. A program is a finite set of clauses. A goal (or
query) is a conjunction of atoms. The concept of computation rule is used to
select an atom within a goal for its evaluation. The operational semantics of
programs is based on derivations. Consider a program P and a goal G of the
form ← A1, . . . , AR, . . . , Ak. Let R be a computation rule such that R(G) =AR.
Let C = H ← B1, . . . , Bm be a renamed apart clause in program P . Then
θ(A1, . . . , AR−1, B1, . . . , Bm, AR+1, . . . , Ak) is derived from G and C viaR where
θ = mgu(AR, H). An SLD derivation for P ∪ {G} consists of a possibly infinite
sequence G = G0, G1, G2, . . . of goals, a sequence C1, C2, . . . of properly renamed
apart clauses of P , and a sequence θ1, θ2, . . . of mgus such that each Gi+1 is
derived from Gi and Ci+1 using θi+1. A derivation step can be non-deterministic
when AR unifies with several clauses in P , giving rise to several possible SLD
derivations for a given goal. Such SLD derivations can be organized in SLD
trees. A finite derivation G = G0, G1, G2, . . . , Gn is called successful if Gn is
empty. In that case θ = θ1θ2 . . . θn is called the computed answer for goal G.
Such a derivation is called failed if it is not possible to perform a derivation step
with Gn. We will also allow incomplete derivations in which, though possible,
no further resolution step is performed. We refer to SLD resolution restricted to
the case of leftmost computation rule as LD resolution.

Partial Evaluation (PE) [4, 12] is a program transformation technique which
specializes a program w.r.t. part of its known input data. Hence it is sometimes
also known as program specialization. Informally, given an input program and
a set of atoms, the PE algorithm applies an unfolding rule in order to compute
finite (possibly incomplete) SLD trees for these atoms. This process returns a
set of resultants (or residual rules), i.e., a residual program, associated to the
root-to-leaf derivations of these trees. Formally, an unfolding rule computes a
set of finite SLD derivations D1, . . . , Dn (i.e., a possibly incomplete SLD tree) of
the form Di = A, . . . , Gi with computed answer substitution θi for i = 1, . . . , n
whose associated resultants (or residual rules) are θi(A) ← Gi. Note that in
contrast to PE of pure programs, in the presence of impure predicates, failing
derivations cannot be blindly eliminated from the set of resultants, since this
may not preserve the behaviour of the program w.r.t. side-effects. Each unfold-
ing step during partial evaluation can be conceptually divided into two steps.
First, given a goal ← A1, . . . , AR, . . . , Ak the computation rule determines the
selected atom AR. Second, it must be decided whether unfolding (or evaluation)



120 E. Albert, G. Puebla, and J.P. Gallagher

of AR is profitable. It must be noted that the unfolding process requires the
introduction of this profitability test in order to guarantee that unfolding termi-
nates. Also, unfolding usually continues as long as some evidence is found that
further unfolding will improve the quality of the resultant program.

3.1 Leftmost Unfolding with Impure and External Predicates

The trivial computation rule which always returns the leftmost atom in a goal is
interesting in that it avoids several correctness and efficiency issues in the con-
text of PE of full Prolog programs. Such issues are discussed in depth throughout
this paper. When a (leftmost) atom AR is selected during PE, with pred(AR)
= p/n being an external predicate, it may not be possible to unfold AR for sev-
eral reasons. First, we may not have the code defining p/n and, even if we have
it, unfolding AR may introduce in the residual program calls to predicates which
are private to the module where p/n is defined. Also, it can be the case that
the execution of atoms for (external) predicates produces other outcomes such
as side-effects, errors, and exceptions. Note that this precludes the evaluation of
such atoms to be performed at PE time, since those effects need to be performed
at run-time. In spite of this, if the executable code for the external predicate p/n
is available, and under certain conditions, it can be possible to fully evaluate AR

at specialization time. The notion of evaluable atom [14] captures the require-
ments which allow the leftmost execution of external predicates at PE time.
Informally, an atom is evaluable if its execution satisfies four conditions: 1) it
universally terminates, 2) it does not produce side-effects, 3) it does not issue
errors and 4) it is sufficiently instantiated. We use eval(E) to denote that the
expression E is evaluable.

4 From Impure Predicates to Impure Atoms

Existing techniques for PE allow the unfolding of non-leftmost atoms by com-
bining a classification of predicates into pure and impure with techniques for
avoiding backpropagation of binding and failure in the case of impure predi-
cates. In order to classify predicates as pure or impure, existing methods [8] are
based on simple reachability analysis.

Our work improves on existing techniques by 1) providing a finer-grained
notion of impurity, which rather than being defined at the level of predicates, is
defined at the level of individual atoms, and 2) splitting the notion of purity into
its constituent properties: binding-sensitivity, errors and side effects. Defining
purity at the level of atoms is of interest since it is often the case that some
atoms for a predicate are pure whereas others are impure. As an example, the
atom var(X) is impure (binding sensitive), whereas the atom var(f(X)) is not
(it is no longer binding sensitive). As will be seen later, this allows reducing
substantially the situations in which backpropagation has to be avoided.

4.1 Binding-Sensitivity

A binding-sensitive predicate is characterized by having a different success or
failure behaviour under leftmost execution if bindings are backpropagated onto



Non-leftmost Unfolding in Partial Evaluation of Logic Programs 121

it. Examples of binding-sensitive predicates are atom/1, number/1, ground/1,
var/1, nonvar/1, etc.

Definition 1 (binding insensitive atom). An atom A is binding insensitive,
denoted bind ins(A), if ∀ sequence of distinct variables 〈X1, . . . , Xk〉 s.t. Xi ∈
vars(A), i = 1, . . . , k and ∀ sequence of terms 〈t1, . . . , tk〉, the goal ← (X1 =
t1, . . . , Xk = tk, A) succeeds in LD resolution with computed answer σ iff the
goal ← (A, X1 = t1, . . . , Xk = tk) also succeeds in LD resolution with computed
answer σ.

Let us note that in the definition above we are only concerned with successful
derivations, which we aim to preserve. However, we are not in principle concerned
about preserving infinite failure. For example, ← (A, X = t) and ← (X = t, A)
might have the same set of answers but a different termination behaviour. In
particular, the former might have an infinite derivation under LD resolution
while the second may finitely fail.

If an atom contains no variables, binding insensitivity trivially holds. This is
quite useful in practice, since it may allow considering a good number of atoms
as binding insensitive without the need of sophisticated analyses.

4.2 Side-Effects

Predicates p/n for which ← A, fail and ← fail, with pred(A) = p/n, are not
equivalent in LD resolution are termed as “side-effects” in [16]. Typical examples
of predicates with side-effects are write/1 and assert/1.

Definition 2 (side-effect-free atom). An atom A is side-effect free, denoted
sideff free(A), if the run-time behaviour of ← A, fail is equivalent to that of
← fail.

Since side-effects have to be preserved in the residual program, we have to avoid
any kind of backpropagation which can anticipate failure and, therefore, hide an
existing side-effect.

4.3 Run-Time Errors

There are some predicates whose call patterns are expected to be of a certain type
and/or instantiation state. If an atom A does not correspond to the intended call
pattern, the execution of A will issue some run-time errors. Since we consider
such run-time errors as part of the behaviour of a program, we will require that
the partial evaluation process produces a residual program whose behaviour
w.r.t. run-time errors is identical to that of the original program, i.e., run-time
errors must not be introduced to, nor removed from, the program.

For instance, the predefined predicate is/2 requires its second argument to
be an arithmetic expression. If that is detected not to be the case at run-time,
an error is issued. Clearly, backpropagation is dangerous in the context of atoms
which may issue run-time errors, since it can anticipate the failure of a call to
the left of is/2 (thus omitting the error), or it can make the call to is/2 not to
issue an error (if there is some free variable in the second argument which gets
instantiated to an arithmetic expression after backpropagation).



122 E. Albert, G. Puebla, and J.P. Gallagher

Definition 3 (error-free atom). An atom A is error-free if the execution of
A does not issue any error. We write error free(A) where A is error-free.

Somewhat surprisingly this condition for PE corresponds to that used in [6] for
computing safe call patterns. Unfortunately, the way in which errors are issued
can be implementation dependent. Some systems may write error messages and
continue execution, others may write error messages and make the execution
of the atom fail, others may halt the execution, others may raise exceptions,
etc. Though errors are often handled using side-effects, we will make a distinc-
tion between side-effects and errors for two reasons. First, side-effects can be
an expected outcome of the execution, whereas run-time errors should not oc-
cur in successful executions. Second, it is often the case that a predicate which
contains side-effects produces them unconditionally for all (or most of) atoms
for that predicate. However, predicates which can generate run-time errors can
be guaranteed not to issue errors when certain preconditions about the call are
satisfied, i.e., when the atom is well-moded and well-typed. A practical impli-
cation of the above distinction is that simple reachability analysis will be used
for propagating side-effect freeness at the level of predicates, whereas a more
refined, atom-based classification will be used in the case of error-freeness.

5 Soundness Conditions for Backpropagation

Given the definitions of binding insensitive, side-effect free, and error free atoms,
we proceed to define aggregate properties which summarize the effect of such
individual properties. These properties will allow us to define the soundness
conditions under which backpropagation of bindings and failure is correct.

5.1 Backpropagation of Failure

The next definition formalizes the concept of observable-free atom which is re-
quired in order to determine whether backpropagation of failure is permitted.

Definition 4 (observable-free atom). An atom A is observable-free, denoted
observable free(A), if error free(A) ∧ sideff free(A).

Intuitively, if an atom A is not observable-free, then ← A, fail may behave
differently from ← fail and thus backpropagation onto A has to be avoided.
The notion of observable-safe step characterizes the derivation steps for which
backpropagation of failure is not problematic.

Definition 5 (observable-safe derivation step). Let P be a program, let
G =← A1, . . . , An be a goal and let R be a computation rule s.t. R(G) = AR. Let
C be a renamed apart clause in P s.t. the head of C unifies with AR. We say that
the derivation step for G and C via R is observable-safe if observable free(A1)∧
. . . ∧ observable free(AR−1).

The notion of observable-safe derivation step can be incorporated in a PE system
in a straightforward way. More concretely, the computation rule used within
the unfolding rule can be defined in such a way that tries to select first those



Non-leftmost Unfolding in Partial Evaluation of Logic Programs 123

atoms whose evaluation gives rise to observable-safe steps. Clearly, sometimes
there will be no such possibility and it will be forced to either select an atom
whose evaluation performs a non observable-safe step or stop unfolding. In each
case, the partial evaluator will treat failing derivations as follows. 1) If all steps
are observable-safe, then the failing derivation does not need to be taken into
account for code generation, as it is done in traditional PE. 2) In contrast, if it
contains one or more steps which are not observable-safe, then if the final goal
in the derivation is of the form ← A1, . . . , AR, . . . , An, the partial evaluator has
to produce a resultant associated to it of the form θ(A) ← A1, . . . , AR−1, fail,
where fail/0 is a predefined predicate which finitely fails. Note that all atoms to
the right of AR, i.e., AR+1, . . . , An can be safely be removed from the resultant.

5.2 Backpropagation of Bindings

The notion of pure atom is necessary in order to ensure that backpropagation
of bindings does not change the runtime behaviour of the original program.

Definition 6 (pure atom). An atom A is pure, denoted pure(A), if
observable free(A) ∧ bind ins(A).

The notion of backpropagation-safe derivation step characterizes the derivation
steps in which backpropagation of bindings (and failure) can be safely performed.

Definition 7 (backpropagation-safe derivation step). With the same con-
ditions as Definition 5, we say that the derivation step for G and C via R is
backpropagation-safe if pure(A1) ∧ . . . ∧ pure(AR−1).

We say that a computation rule R is backpropagation-safe if it always selects
atoms in such a way that the derivation step is backpropagation-safe. It is easy
to incorporate the idea of backpropagation-safe in a PE system. Note that by
definition, leftmost unfolding is always backpropagation-safe. Thus, one simple
but very inaccurate policy is to restrict ourselves to leftmost unfolding in the
presence of impure predicates. If we would like to use a computation rule which
is not always backpropagation-safe, then backpropagation has to be avoided in
those steps which are possibly unsafe by using one of the existing proposals
(e.g.,[1, 2, 8, 9, 10]).

5.3 Sound Derivations

Finally, we introduce the concept of sound step which requires that the selected
atom is either user-defined or can be executed (or both), as well as the step
be backpropagation-safe. We first present the notion of evaluable atom which
provides the conditions under which an atom can be executed at specialization
time. In order to provide a precise definition in the context of external predicates,
we need to introduce first the notion of terminating atom.

Definition 8 (terminating atom). An atom A is called terminating, denoted
termin(A), if the LD tree for ← A is finite. We write termin(A) where A is
terminating.



124 E. Albert, G. Puebla, and J.P. Gallagher

The definition above is equivalent to universal termination, i.e., the search for
all solutions to the atom can be performed in finite time. Note that this condition
is not necessary for internal predicates since the unfolding rule incorporates
mechanisms for ensuring their termination. If the code of the external predicate
was available, we could simply unfold the predicate using the same mechanisms
as for internal ones.

Definition 9 (evaluable atom). An atom A is evaluable, denoted eval(A), if
pure(A) ∧ termin(A).

The notion of evaluable atoms can be extended in a natural way to boolean
expressions composed of conjunction and disjunctions of atoms.

Definition 10 (sound derivation step). With the same conditions as Defi-
nition 5, we say that the derivation step for G and C via R is sound if

pure(A1) ∧ . . . ∧ pure(AR−1)
pred(AR) is defined in P ∨ eval(AR)

It is important to note that if AR is an atom for a predicate defined in program
P , then no further condition is required on the selected atom itself. As a result,
leftmost unfolding of user-defined predicates is always sound, even if the pro-
gram contains impure predicates. Also, even if the predicate is user-defined, our
implementation will fully execute the atom, rather than unfold it, if eval(AR) can
be guaranteed to hold. This produces important speedups in the PE process.

Our next theorem states that even in the presence of impure predicates, the
independence of the computation rule still holds as long as we restrict ourselves
to computation rules which are backpropagation-safe.

Theorem 1 (independence of the computation rule). Let P be program
and G a goal. Let R be a backpropagation-safe computation rule. There is a
successful LD derivation for G with c.a. σ iff there is a successful SLD derivation
for G via R with c.a. σ′ s.t. σ(G) is a variant of σ′(G).

The above theorem extends the classical result in logic programming theory for
pure programs to impure programs but only for those cases where the compu-
tation rule, though it can potentially choose a non-leftmost atom, it will never
“jump over” a possibly impure atom.

Also, in the context of impure predicates we are interested in preserving the
observables which are generated during the execution of the program.

Definition 11 (observables). Let P be a program and a G be a goal. Let D
be a LD derivation for P ∪ {G}. We define the sequence of observables of the
derivation D, denoted O(D), as the sequence of side-effects and errors which
occur in D.

Our unfolding process has to preserve observables both for successful and failing
derivations, since otherwise observables would be eliminated from the program.

Theorem 2 (preservation of observables). Let P be program and G a goal.
Let R be a backpropagation-safe computation rule. There is an LD derivation
D for G with O(D) �= ∅ iff there is a SLD derivation D′ for G via R s.t.
O(D′) = O(D).



Non-leftmost Unfolding in Partial Evaluation of Logic Programs 125

Our safety conditions for non-leftmost unfolding preserve computed answers, but
has the well-known implication that an infinite failure can be transformed into a
finite failure. However, in our framework this will only happen for predicates which
do not have side-effects, since non-leftmost unfolding is only allowed in the pres-
ence of pure atoms. Nevertheless, our framework can be easily extended to preserve
also infinite failure by including termination as an additional property that non-
leftmost unfolding has to take into account, i.e. this implies requiring that all atoms
to the left of the selected atom should be evaluable and not only pure.

6 Partial Evaluation with Purity Assertions

Though Definition 10 provides conditions under which backpropagation does not
need to be hidden, it cannot be used as the basis for an effective PE mechanism,
since in general it is not possible to determine at specialization time whether
a derivation step is backpropagation-safe or not. In this section, we propose
a PE scheme which takes into account purity conditions stated by means of
assertions. We use the assertion language of CiaoPP [15] to provide the concrete
syntax of several kinds of assertions. The assertions include sufficient conditions
(SC) which are decidable and under which atoms for a predicate are pure. Thus,
they can be used as an effective method to guarantee that certain non-leftmost
derivation steps are backpropagation-safe.

Example 2. In Figure 3, we present sufficient conditions for a few predefined
predicates (builtins) in Ciao which guarantee that the atoms for the correspond-
ing predicates satisfy the purity properties discussed in the previous section,
where arithexp(X) stands for X being an arithmetic expression which should be
ground at the time of its evaluation, struct(X) succeeds iff X is bound to a func-
tor with arity strictly greater than zero, and nnegint(X) succeeds iff X is bound

observable-free
pure

eval
predicate sideff free error free bind ins termin
var(X) true true nonvar(X) true

nonvar(X) true true nonvar(X) true
write(X) false true ground(X) true
assert(X) false false ground(X) true
A <= B true arithexp(A)∧arithexp(B) true true
A >= B true arithexp(A)∧arithexp(B) true true

ground(X) true true ground(X) true
A = B true true true true

append(A,B,C) true true true list(A)∨list(C)
functor(A,B,C) true nonvar(A)∨(atom(B)∧nnegint(C)) true true

arg(A,B,C) true nnegint(A)∧struct(B) true true
open(A,B,C) false false ground(C) true

Fig. 3. Purity conditions for some predefined predicates



126 E. Albert, G. Puebla, and J.P. Gallagher

to a non-negative integer. For example, unification is pure and evaluable in all
circumstances. The library predicate append/3 is pure but only evaluable if ei-
ther the first or third argument is bound to a list skeleton. The library predicate
open/3 requires its third argument to be a variable. Thus, backpropagation in
this case can introduce errors which would not appear in LD resolution.
Since we consider modular programs, in the following definitions, we have to
indicate always the module in which the predicate is defined. We say that the
execution of an atom A with Pred(A) = p/n on a logic programming system
Sys (by Sys we mean a Prolog implementation, e.g., Ciao or Sicstus) in which
the module M (where the predicate p/n is defined), together with all mod-
ules transitively used by M , have been loaded trivially succeeds, denoted by
triv suc(Sys, M, A), when the execution of A terminates and succeeds only once
with the empty computed answer, that is, it performs no bindings.

Definition 12 (binding insensitive assertion). Let p/n be a predicate de-
fined in module M . The assertion :- trust comp p(X1,...,Xn):SC+bind ins.
is a correct binding insensitive assertion for predicate p/n in a logic programming
system Sys if, ∀ A s.t. A = θ(p(X1, . . . , Xn)),

1. eval(θ(SC)), and
2. triv suc(Sys, M, θ(SC)) ⇒ bind ins(A).

The fourth column in Fig. 3 shows the sufficient conditions (SC in Def. 12) stated
in several binding insensitive assertions for the predicates in the first column
(p(X1, ..., Xn) in Def. 12). For instance, ground(X) is a sufficient condition for
bind ins(write(X)) to hold.

Given a set of assertions AS and an atom A, we use bind ins(A, AS) to denote
that there exists an assertion :- trust comp p(X1,...,Xn) : SC + bind ins
in AS s.t. A = θ(p(X1, . . . , Xn)) and triv suc(Sys, M, θ(SC)).

Definition 13 (error-free assertion). Let p/n be a predicate defined in mod-
ule M . The assertion “:- trust comp p(X1,...,Xn) : SC + error free.” is
a correct error-free assertion for predicate p/n if, ∀ A s.t. A = θ(p(X1, . . . , Xn)),

1. eval(θ(SC)), and
2. triv suc(Sys, M, θ(SC)) ⇒ error free(A).

It should be noted that some builtin predicates can behave in a different way on
different systems. In particular, certain calls can fail in a system and issue an
error in a different one.

The third column in Fig. 3 illustrates some sufficient conditions for error-
freeness for a few predefined predicates. For instance, the SC for predicate A>=B
states that both arguments should be arithmetic expressions. This guarantees
error free calls to predicate >=/2.

Given a set of assertions AS and an atom A, we use error free(A, AS) to denote
that there exists an assertion :- trust comp p(X1,...,Xn) : SC + error free
in AS s.t. A = θ(p(X1, . . . , Xn)) and triv suc(Sys, M, θ(SC)).



Non-leftmost Unfolding in Partial Evaluation of Logic Programs 127

Definition 14 (side-effect free assertion). Let p/n be an external predicate
defined in module M . The assertion :- trust comp p(X1,...,Xn)+sideff free.
is a correct side-effect free assertion for predicate p/n if, ∀θ, the execution of
θ(p(X1, ..., Xn)) does not produce any side effect, i.e., sideff free(A).

The second column in Fig. 3 shows which predicates are side-effect free. In
contrast to the two previous assertions, side-effect assertions are unconditional,
i.e., their SC always takes the value true. For brevity, both in the text and in
the implementation we omit the SC from them. Let us note that the set of
side-effect free atoms is included in the set of error-free atoms, i.e., if A is not a
side-effect free atom, then the execution of ← A, fail is not equivalent to ← fail
and, thus, A is also not side-effect free. Nevertheless, we differentiate side-effects
and errors both for conceptual clarity and also because a simple reachability
analyses can be used to infer side-effects while errors are more accurately dealt
by context-sensitive analyzers.

Given a set of assertions AS and an atom A, we use sideff free(A, AS) to de-
note that there exists an assertion :- trust comp p(X1,...,Xn) + sideff free
in AS s.t. A = θ(p(X1, . . . , Xn)).

Example 3. The following assertions are predefined in Ciao for predicate >=/2:

:- trust comp A >= B : (arithexp(A),arithexp(B)) + error_free.
:- trust comp A >= B + sideff_free.
:- trust comp A >= B + bind_ins.

An important thing to note is that rather than using the overall eval asser-
tions (see [14]), we prefer to have separate assertions for each of the different
properties required for an atom to be evaluable. However, users can write eval
assertions directly if they prefer so. There are several reasons for this. On one
hand, it will allow weakening the conditions required for different purposes. For
example, binding insensitivity is not required for avoiding backpropagation of
failure. Also, eval assertions include termination which is not required for ensur-
ing correctness w.r.t. computed answers (see Sect. 4) nor termination of internal
predicates. Second, it will allow us the use of different analyses for inferring each
of these properties (e.g., a simple reachability analysis is sufficient for uncondi-
tional side-effects while more elaborated analysis tools are needed for error and
binding sensitivity). Finally, having separate properties will allow reusing such
assertions for other purposes different from partial evaluation. For instance, side-
effect and error free assertions are also interesting for other purposes (e.g., for
program verification, for automatic parallelization) and are frequently required
by programmers separately.

6.1 Automatic Inference of Purity Assertions

In the case of leftmost unfolding, eval assertions [14] can be used in order to
determine whether evaluation of atoms for external predicates can be fully done
at specialization time or not. Such eval assertions (or assertions for their con-
stituent properties) should be present whenever possible for all library (including
builtin) predicates. Though the presence of such assertions is not required, as the



128 E. Albert, G. Puebla, and J.P. Gallagher

lack of assertions is interpreted as the predicate not being evaluable under any
circumstances, the more eval assertions are present for external predicates, the
more profitable partial evaluation will be. Ideally, eval assertions can be provided
by the system developers and the user does not need to add any eval assertion.

If non-leftmost unfolding is allowed, an important distinction is that pure
assertions are of interest not only for external predicates but also for internal,
i.e., user-defined predicates. As already mentioned, the lack of pure assertions
must be interpreted as the predicate not being pure, since impure atoms can be
reached from them. Thus, for non-leftmost unfolding to be able to “jump over”
internal predicates, it is required that such pure assertions are available not
only for external predicates, but also for predicates internal to the module. Such
assertions can be manually added by the user or, much more interestingly, as
our system does, by backwards analysis [3, 5, 6]. Indeed, we believe that manual
introduction of assertions about purity of goals is too much of a burden for the
user. Therefore, accurate non-leftmost unfolding becomes a realistic possibility
only thanks to the availability of analysis.

Using a simple reachability analysis for error-free and binding-insensitivity
assertions would result in very imprecise results, as in other existing approaches.
Thus, we would like to perform a context-sensitive analysis which would allow
us to determine that some particular contexts guarantee the purity of atoms.
The main difficulty with this context-sensitive approach to purity analysis is
that it is rather difficult to find out which are the contexts of interest which may
appear during a particular PE process. One possibility would be to use a set
of representative initial contexts, but this is rather difficult to do, especially for
domains with an infinite number of abstract values.

A much more promising approach is based on backwards analysis [3, 5, 6] of
logic programs. This kind of analysis has been successfully applied in termina-
tion analysis and inference of call patterns which are guaranteed not to produce
any runtime error. We propose a novel application of backwards analysis for
automatically inferring binding-insensitive, error-free and side-effect free asser-
tions which are useful for improving the accuracy of partial evaluation, as it
has been discussed throughout the paper. In our implementation, we rely on the
backwards analysis technique of [3]. In this approach, the user first identifies a
number of properties that are required to hold at body atoms at specific pro-
gram points. A meta-program is then automatically constructed, which captures
the dependencies between initial goals and the specified program points. For our
specific application, we need to observe the occurrences of all predicates since
the lack of purity assertions must be interpreted as the atom not being pure.
Therefore, all program points are subject of analysis. Standard abstract inter-
pretation techniques are applied to the meta-program; from the results of the
analysis, conditions on initial goals can be derived which guarantee that all the
given properties hold whenever the specified program points are reached. In our
particular application, we infer the conditions under which calls to all predicates
are pure. The details on how the meta-program is constructed are outside the
scope of this paper (see [3]). We simply show by means of an example the kind
of information it infers.



Non-leftmost Unfolding in Partial Evaluation of Logic Programs 129

Example 4. Consider the purity conditions for predicate ground/1 in Fig 3 and
the program in Fig. 1. Predicate long comp/2 is externally defined in module
comp along with these predefined assertions:

:- trust comp long_comp(X,Y) : true + error_free.
:- trust comp long_comp(X,Y) + sideff_free.
:- trust comp long_comp(X,Y) : ground(Y) + bind_ins.

For simplicity we consider in this example a simple domain with elements ground
and nonground. Note that our framework can be extended to reason about many
other properties like arithexp, list, etc. by using an abstract domain which
captures such information. In particular, we need to include the definitions for
the properties we want to capture.

Backwards analysis of the running example and the available assertions (for
long comp/2 and ground/1), infers the following assertions for problem/2:

:- trust comp problem(X,Y) : true + error_free.
:- trust comp problem(X,Y) + sideff_free.
:- trust comp problem(X,Y) : ground(Y) + bind_ins.

The last assertion indicates that calls performed to problem(X,Y) with the sec-
ond argument being ground are binding insensitive. This allows our specializer
to “jump over” the call to problem and backpropagate bindings, which will in
turn trigger further unfolding.

6.2 Combining Assertions with Partial Evaluation

We now provide an extension of the definition of safe derivation which takes into
account the purity conditions in our assertions. We use pure(A, AS) to denote
bind ins(A, AS) ∧ error free(A, AS) ∧ sideff free(A, AS).

Definition 15 (backpropagation-safe derivation step w.r.t. assertions).
Let AS be a correct set of assertions. Let P be a program, let G =← A1, . . . , An

be a goal and let R be a computation rule s.t R(G) = AR. Let C be a renamed
apart clause in P s.t. the head of C unifies with AR. We say that the derivation
step for G and C via R is backpropagation-safe w.r.t. AS if pure(A1, AS)∧ . . .∧
pure(AR−1, AS).

In order to integrate the above notion in an unfolding rule, the same ideas
sketched in Sect. 5.3 apply here. We also give the corresponding definition for
sound derivation based on purity assertions.

Definition 16 (sound derivation step w.r.t. assertions). With the same
conditions as Definition 7, we say that the derivation step for G and C via R is
sound w.r.t. AS if

pure(A1, AS) ∧ . . . ∧ pure(AR−1, AS)
pred(AR) is defined in P ∨ eval(AR, AS)



130 E. Albert, G. Puebla, and J.P. Gallagher

An important difference between the above definition w.r.t Definition 10 is that
the former is effective since the sufficient conditions provided by assertions can
effectively be used at specialization time in order to determine that certain atoms
are pure. This in turn will allow performing backpropagation of bindings and
failure for non-leftmost unfolding steps under circumstances where existing tech-
niques would need to resort to not backpropagating.

Similar theorems to Theorem 1 and Theorem 2 can be enunciated which
guarantee the correctness of derivation steps performed using a computation rule
which is backpropagation-safe with respect to a set of correct purity assertions.

Example 5. Consider a deterministic unfolding rule which only performs sound
derivation steps. In our running example, it performs an initial step and derives
the goal problem(X,a),q(X). Now, it cannot select the atom problem(X,a)
because its execution performs a non-deterministic step. Fortunately, the as-
sertions inferred for problem(X,Y) in Ex. 4 allow us to jump over this atom
and specialize first q(X). In particular, the first two assertions, since their SC is
true, guarantee that there is no problem related to errors or side-effects. From
the last assertion, we know that the above call is binding insensitive, since the
condition “ground(a)” trivially succeeds. If atom q(X) is evaluated first, then
variable X gets instantiated to a. Now, the unfolding rule already can select the
deterministic atom problem(a,a) and obtain the fact “ main(a,a).” as par-
tially evaluated program. The interesting point to note is that, without the help
of assertions, the derivation is stopped when the atom problem(X,a) is selected
because any call to problem is considered potentially dangerous since its execu-
tion reaches a binding sensitive predicate. The equivalent specialized rule in this
case is: “main(X,a):-problem(X,a),q(X).” A detailed explanation on the im-
provements achieved by our specialized program is provided in the three points
enumerated in Sect. 1.

7 Conclusions

We have presented a practical partial evaluation scheme for full Prolog programs
with impure predicates. As it is well known, impure features pose non-trivial
challenges in the context of non-leftmost unfolding in partial evaluation. Exist-
ing (more conservative) approaches avoid backpropagating bindings and failure
in the presence of such problematic predicates at the cost of accuracy. However,
under certain conditions, calls to apparently impure predicates in reality are
pure and thus backpropagation can be safely performed onto them. Our pro-
posal is more accurate in that the partial evaluator takes into account purity
conditions (stated by means of assertions) in order to decide whether backprop-
agation during non-leftmost unfolding is safe. Thanks to the use of backwards
analysis, correct and precise sufficient conditions can be automatically inferred
for all predicates from a set of predefined assertions available in the system. Our
approach has been successfully integrated in the context of CiaoPP, the analy-
sis/specialization preprocessor of the Ciao logic programming system, in which
we have available a full assertion language and a number of analyzers. As for
future work, we plan to exploit our automatically inferred assertions for purity



Non-leftmost Unfolding in Partial Evaluation of Logic Programs 131

in an abstract partial evaluation framework, where we can prove that certain
backpropagations are safe using a combination of sharing analysis with refined
notions of independence.

Acknowledgments

This work was funded in part by the Information Society Technologies pro-
gramme of the European Commission, Future and Emerging Technologies under
the FP5 IST-2001-38059 ASAP and FP6 IST-15905 MOBIUS projects and by
the Spanish Ministry of Science and Education under the TIC 2002-0055 CU-
BICO project. Part of this work was performed during a research stay of Elvira
Albert and Germán Puebla at University of Roskilde supported by respective
grants from the Secretaŕıa de Estado de Educación y Universidades, Spanish
Ministry of Science and Education. J. Gallagher’s research is supported in part
by the IT-University of Copenhagen.

References

1. E. Albert, M. Hanus, and G. Vidal. A practical partial evaluation scheme for multi-
paradigm declarative languages. Journal of Functional and Logic Programming,
2002(1), 2002.

2. S. Etalle, M. Gabbrielli, and E. Marchiori. A Transformation System for CLP
with Dynamic Scheduling and CCP. In Proc. of the ACM Sigplan PEPM’97, pages
137–150. ACM Press, 1997.

3. J. Gallagher. A Program Transformation for Backwards Analysis of Logic Pro-
grams. In Proc. of LOPSTR 2003, LNCS 3018, p. 92–105. Springer-Verlag, 2004.

4. J.P. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of
PEPM’93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 88–98. ACM Press, 1993.

5. Jacob M. Howe, Andy King, and Lunjin Lu. Analysing Logic Programs by Rea-
soning Backwards. Program Development in Computational Logic, LNCS, pages
380–393. Springer-Verlag, May 2004.

6. A. King and L. Lu. A Backward Analysis for Constraint Logic Programs. Theory
and Practice of Logic Programming, 2(4–5):32, July 2002.

7. J. Komorowski. An Introduction to Partial Deduction. In A. Pettorossi, editor,
Meta Programming in Logic, Proceedings of META’92, volume 649 of LNCS, pages
49–69. Springer-Verlag, 1992.

8. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial
deduction: Control issues. Theory and Practice of Logic Programming, 2(4 & 5):
461–515, July & September 2002.

9. M. Leuschel, J. Jørgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisation
in prolog using a hand-written compiler generator. TPLP, 4(1–2):139 – 191, 2004.

10. Michael Leuschel. Partial evaluation of the “real thing”. In Proc. of LOPSTR’94
and META’94, LNCS 883, pages 122–137. Springer-Verlag, 1994.

11. Michael Leuschel. On the power of homeomorphic embedding for online termina-
tion. Proc. of SAS’98, LNCS 1503, pages 230–245, 1998. Springer-Verlag.

12. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The
Journal of Logic Programming, 11:217–242, 1991.



132 E. Albert, G. Puebla, and J.P. Gallagher

13. J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edi-
tion, 1987.

14. G. Puebla, E. Albert, and M. Hermenegildo. Efficient Local Unfolding with Ances-
tor Stacks for Full Prolog. In Proc. of LOPSTR’04, number 3573 in LNCS, pages
149–165. Springer-Verlag, June 2005.

15. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In Analysis and Visualization Tools for Constraint Programming,
pages 23–61. Springer LNCS 1870, 2000.

16. D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog. New Generation
Computing, 12(1):7–51, 1993.

17. R. Venken and B. Demoen. A partial evaluation system for prolog: some practical
considerations. New Generation Computing, 6:279–290, 1988.



A Transformational Semantics of Static Embedded
Implications of Normal Logic Programs

Edelmira Pasarella1, Fernando Orejas1, Elvira Pino1, and Marisa Navarro2

1 Dpto de L.S.I., Universitat Politècnica de Catalunya,
Campus Nord, Edifici Omega, Jordi Girona 1-3, 08034 Barcelona, Spain

{edelmira, orejas, pino}@lsi.upc.edu
2 Dpto de L.S.I., Universidad del Paı́s Vasco,

Paseo Manuel de Lardizabal, 1, Apdo 649, 20080 San Sebastián, Spain
marisa@si.ehu.es

Abstract. There are mainly two approaches for structuring logic programs. The
first one is based on defining some notion of program unit or module and on
providing a number of composition operators. The second approach consists in
enriching logic programming with a mechanism of abstraction and scoping rules
that are frequently found, for instance, in procedural programming. More pre-
cisely, this approach has been advocated by Miller and others using implications
embedded in the goals of the given program as a structuring mechanism. How-
ever, as Giordano, Martelli and Rossi pointed out, we can associate two different
visibility rules (static and dynamic) to this kind of structuring mechanism where,
obviously, the semantics of the given program depends on the chosen rule.

In this paper we consider normal constraint logic programs (with constructive
negation á la Drabent as operational semantics) extended with embedded implica-
tions with a static visibility rule. This class of programs combines the expressive
power of normal programs with the capability to organize and to enhance dinam-
ically their sets of clauses. In particular, first, we introduce an operational seman-
tics based on constructive negation for this class of programs, taking into account
the static visibility rule. Then, we present an alternative semantics in terms of a
transformation of the given structured program into a flat one. Finally, we prove
the adequacy of this transformation by showing that it preserves the computed
answers of the given program. Obviously, this transformation semantics can be
used as the basis for an implementation of this structuring mechanism.

1 Introduction

There are mainly two approaches (see [5] for a survey) for structuring logic programs.
The first one is based on defining some notion of program unit or module and on pro-
viding a number of composition operators. Basically, this approach is oriented towards
programming-in-the-large and is called explicit modularity. The second approach con-
sists in enriching logic programming with a mechanism of abstraction and scoping
rules that are frequently found, for instance, in procedural programming. Hence, this
approach seems to be suitable for programming-in-the-small in a structured way. It is
usually called implicit modularity. More precisely, this approach has been advocated by
Miller and others using implications embedded in the goals of the given program as a

P.M. Hill (Ed.): LOPSTR 2005, LNCS 3901, pp. 133–146, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



134 E. Pasarella et al.

structuring mechanism. However, as Giordano, Martelli and Rossi [9] pointed out, we
can associate two different visibility rules (static and dynamic) to this kind of structur-
ing mechanism where, obviously, the semantics of the given program depends on the
chosen rule.

As far as we know, Gabbay and Reyle [7, 8] presented the first approach proposing
to extend Prolog with what is known as hypothetical or embedded implication. Later,
Miller [15] introduced the idea of using this class of programs for structuring logic pro-
grams. Miller used Harrop formulas [17] which are different from the ones we consider
herein. In particular, we do not consider disjunctive goals and goals in which explicit
quantifiers occur.

Since embedded implication can be seen as a structuring device for logic programs,
one can actually define two classes of logic languages depending on the scoping rule
used for accessing predicate definitions [9]. The dynamic and static (also called lexical)
schemes are two well-known schemes in procedural programming. In adapting them to
logic programming, the language presented by Miller follows the dynamic approach.

In the dynamic scheme, both implications, clausal implication and embedded im-
plication, are interpreted as intuitionistic implications. So, the operational semantics is
given by the deduction theorem

P∪Q "d G
P "d Q⊃ G

The intuitive idea is that, given a program P, to prove the query Q ⊃ G it is necessary
to load Q and proceed the inference process with P∪Q. Once G succeeds or fails, Q
must be discarded. From a software engineering point of view, Miller’s proposal allows
us to organize collections of program units without the need of explicit composition
operations. A main result of Miller’s approach is that the proof-theoretic semantics for
this kind of programs can be given in terms of intuitionistic logic.

Giordano, Martelli and Rossi [9] proposed a variation of Miller’s approach. In par-
ticular, they showed that the clausal and the embedded implications can be interpreted
in different ways. Moreover, in [5] a general inference rule is given to explain the inter-
pretation of embedded implication:

P∗ ∪Q "s G
P "s Q⊃ G

where P∗ = {a : a is atomic and P "s a}.
This rule corresponds nicely to the intuition of static scoping. It does not consider

all possible derivations from P∪Q, as in the case of the dynamic approach. To prove
the goal Q⊃G, the definitions in Q are activated but P cannot use them. Therefore, the
behavior that we have described above is similar to the process of activating a block
in a procedural language with static scope. In [1] this matter is addressed and some
considerations for implementing both static and dynamic languages are discussed. The
algebraic semantics proposed in [9] is basically the one proposed by Miller but extended
to be able to interpret the clausal implication in a classical way. Considering classical
and intuitionistic implications together rises some problems because the new semantics



A Transformational Semantics of Static Embedded Implications of NLP 135

fits neither in classical logic nor in intuitionistic logic. This has been addressed in [2, 12]
where a complete logic (extending classical first order logic with the intuitionistic im-
plication) is presented as the underlying logic of such static programming language. The
example below, borrowed from [5], illustrates the difference between the two languages
mentioned above.

Example 1. Let P = {p← q}. To prove P"d {q}⊃ p we have to see if P∪{q} "d p and
this holds if P∪{q} "d q which is a tautology. However, in the static case, P "s {q}⊃ p
holds if P∗ ∪{q} "s p, but P∗ = /0.

In this example it is clear that, by using the dynamic scope rule, an initial sequent is
obtained, while by using the static scope rule there is no rule to apply. Therefore, the
query succeeds only in the dynamic approach. There are more characterizations of im-
plicit modularity. For instance, in [16] a language is proposed in which embedded im-
plications override those definitions provided by the external context but this approach
is beyond this paper.

As far as we know most of the attempts for extending normal logic programming
with embedded implication have been done by considering negation as finite failure,
sometimes with some additional restrictions, such as stratification. Gabbay [7], Mc-
Carty [13, 14], Bonner and McCarty [4], and Giordano and Olivetti [11] have worked
in this direction. The rule for combining dynamic logic programs with finite failure is
the following

P∪Q "d ¬p
P "d Q⊃ ¬p

and the sequent P∪Q "d ¬p is considered an initial sequent when for each clause
p← G there exists a finitely failed tree of G with respect to P∪Q. When considering
static normal programs, the intuitive idea behind the derivation rules is that only the
positive knowledge inferred from outermost blocks and the last activated definitions
must be considered. In particular, the rule for combining static logic programs with fi-
nite failure is the following

P∗ ∪Q "s ¬p
P "s Q⊃ ¬p

and the sequent P∗ ∪Q "s ¬p is considered an initial sequent when for each clause
p← G there exists a finitely failed tree of G with respect to P∗ ∪Q. Let us consider the
following propositional normal logic programs and the derivations in both dynamic and
static approaches:

Example 2. Let P = {t ← q} Q = {q; p← ¬t}

Dynamic Static
P �d Q⊃ p P "s Q⊃ p
P "d Q⊃ ¬p P �s Q⊃¬p



136 E. Pasarella et al.

Note that, for readability, we do not use the comma symbol (,) to separate clauses in set
of clauses. Instead, we use the semicolon symbol (;).

In [19] we studied the extension of normal logic programs, with constructive nega-
tion, with embedded implications with dynamic visibility. In particular, we used a kind
of complex Beth models to provide an algebraic semantics, obtaining soundness and
completeness results. Now, in this paper, we consider the same kind of programs, but
with static scoping. However, we follow a more pragmatic approach. Instead of devel-
oping a new framework to define the declarative semantics of this class of programs,
we show how these programs can be transformed into standard normal programs. More-
over, we prove that this translation is sound and complete with respect to the operational
semantics of the extended programs. In addition, it must be pointed out that this trans-
formation is easy to implement, which means that we can easily build this kind of
extension on top of a standard logic programming language. This approach has been
used in [18] to deal with positive propositional static programs. Indeed, herein we actu-
ally extend that work. This approach has also been used in [3] to translate modal logic
programs with embedded implication into Horn programs.

This paper is organized as follows. In the following section we present some basic
notions and terminology. Section 3 introduces an operational semantics for the class of
static normal logic programs with embedded implications based on SLDFA resolution
[6]. Section 4 presents the transformation semantics and, finally, in Section 5, we prove
the soundness and completeness of the transformation.

2 Preliminaries

A countable signature Σ consists of a pair of sets (FSΣ,PSΣ) of function and predicate
symbols, respectively, with some associated arity. Terms, atoms or first-order formu-
las built by using functions and/or predicates from Σ and, also, variables from a fixed
countable set X of variable symbols are called Σ-terms, Σ-atoms and Σ-formulas, re-
spectively. Predicate symbols, atoms and literals are denoted by p,q, . . ., by a,b and by
the character �, respectively. A formula whose subterms are variables is called a flat
formula. Considering a first-order logic formula ϕ, ϕ∀ and ϕ∃ are the universal and ex-
istential closure of ϕ, respectively. The logical constants are respectively denoted by t
and f. The set of variables appearing in a term t (resp. formula ϕ) is denoted var(t)
(resp. var(ϕ)) and FV (ϕ) denotes the set of free variables occurring in ϕ. Programs are
denoted P and Q. In general, subscripts and superscripts will be used if needed and a
bar is used to denote (finite) sequences of objects.

An extended Σ-literal, denoted G, is either a normal Σ-literal, b or ¬b, where b is
a Σ-atom; or a Σ-expression of the form Q ⊃ G′ where Q is a Σ-program and G′ is an
extended Σ-literal. An extended Σ-goal is either the logical constant t or a sequence of
extended Σ-literals. Normal logic program with embedded implications over a signature
Σ are finite sets of clauses

a← G1, . . . ,Gk, k≥ 0

being a a Σ-atom and G1, . . . ,Gk an extended Σ-goal (also written as (G1, . . . ,Gk) if
needed for readability). We denote with CΣ (resp. GΣ) and C⊃Σ (resp. G⊃

Σ ) to the sets of



A Transformational Semantics of Static Embedded Implications of NLP 137

all the normal Σ-clauses (resp. Σ-goals) and all the normal Σ-clauses (resp. Σ-goals) in
which embedded implication occurs.

We consider that any Σ-program is written following the structure of constraint nor-
mal Σ-programs, with flat head. That is, any clause

p(t1, . . . ,tn)← G1, . . . ,Gk, k ≥ 0

is written as the constrained clause

p(x1, . . . ,xn)← G1, . . . ,Gk�x1 = t1, . . . ,xn = tn, k ≥ 0

Moreover, we suppose that the identical tuple x1, . . . ,xn of fresh variables occurs in all
clauses (in a program) with predicate p in its heads. Also, just to simplify, clauses of
the form a← t�t are written as a.

Free variables in a clause are assumed to be implicitly quantified universally. This
means that the scope of a variable is the clause where it is defined. For example, the
clause p(x)← {q(x)} ⊃ r(x) is interpreted as ∀x(p(x) ← {∀yq(y)} ⊃ r(x)) and the
clause p← {q(y)} ⊃ r(y) as p← ∃y({∀zq(z)} ⊃ r(y)).

The set of definitions of a predicate p is established with respect to a given program
P as follows:

De f (P, p)≡ {p(x)← G�c ∈ P}
Constraints occurring in programs are equality Σ-constraints, that is, arbitrary first-

order Σ-formulas in which the only relational symbol occurring in atoms is the equality
(formulas composing equality atoms with the connectives ¬,∧,∨,→, and the quanti-
fiers ∀,∃. Constraints are denoted by using the letters c and d (possibly with sub or
super-scripts). We will handle constraints in a logical way, using logical consequence
of the free equality theory, FETΣ. A constraint c is satisfiable (resp. unsatisfiable) if,
and only if, FETΣ |= c∃ (resp. FETΣ |= ¬(c∃)); a constraint d is less general than c if,
and only if, FETΣ |= (d → c)∀. For the sake of simplicity in what follows we drop the
prefix Σ− when referring to programs, clauses, etc.

To finish this section we slightly remind SLDFA-resolution. This approach to con-
structive negation is based on computing failed answers of goals of the form ¬��c with
respect to a normal program P. To do it, Drabent proposes a nondeterministic method
useful for our purposes. The idea is to construct an SLDFA-finitely failed tree starting
with an (prefailed) SLDFA-derivation tree with root ←��c. Let us call this tree T . The
method proceeds by choosing a finite set of nodes of T , called cross-section of T , such
that every successful or infinite branch intersects with this set. Next step is to instantiate
T by a constraint c′ such that c∧c′ is satisfiable and FV (c′)∪FV (T )⊆ FV (��c). That
is, for each node ←�

′
�d in T , if d∧ c′ is satisfiable, to change it into ←�

′
�d∧ c′ other-

wise, to prune the subtree whose root is ←�
′
�d. Whenever the instantiated (prefailed)

tree is finite and has no successful branches it becomes into an SLDFA-finitely failed
tree. Thus, to transform T into an SLDFA-finitely failed tree it is enough to choose a
cross-section and ”find” an adequate constraint c′ such that after instantiating T , the
subtrees whose roots are in the selected cross-section have been pruned. In particu-
lar, considering a (prefailed) tree of ←a�c, to prune all the nodes in a cross-section
{←�1�d1, . . . ,←�m�dm}, the tree must be instantiated with a constraint c′ such that



138 E. Pasarella et al.

FETΣ |= (c′ → ¬d1 ∧ . . .∧¬dm)∀. A most general c′ satisfying this is (equivalent to)
¬d1 ∧ . . .∧¬dm. Hence, if c∧¬d1 ∧ . . .∧¬dm is satisfiable, the tree becomes into an
SLDFA-tree and, therefore c∧¬d1∧ . . .∧¬dm is a failed answer of ←a�c with respect
to the considered program.

3 Operational Semantics

In this section, we propose an operational semantics which can be seen as a combination
of the operational semantics defined in [9] and SLDFA resolution [6]. This semantics is
obviously quite close to the one defined in [19] for normal logic programs with embed-
ded implications when using dynamic scoping. The semantics is presented in terms of
a derivation relation over sequents of the form S "s G�c, where S is a stack of programs
and G�c is a goal. Here below we present a definition of stack.

Definition 1. (Stack of programs) Given the programs P1, . . . ,Pk, k > 0, a stack of pro-
grams Sk is a sequence 〈 /0,P1, . . . ,Pk〉 written as P1| . . . |Pk. A stack of programs in-
creases/decreases following a LIFO strategy, assuming that the last added program is
Pk. The length of Sk is k.

For technical reasons we assume that every stack includes the empty program at the
bottom. The basic idea is quite simple. If we want to solve a positive goal p(x)�c, given
the stack of programs P1| . . . |Pk, we can choose a rule from one of the programs in the
stack Pi, p(x)← G�d, and then solve all the goals in the rule using the stack P1| . . . |Pi.
If we want to solve a negative goal ¬p(x)�c, given the stack of programs P1| . . . |Pk,
then for every rule p(x)← G�d in Pi (for any i), we have to prove that some subset
of the goals in G�c∧d can be refuted in the stack P1| . . . |Pi. Obviously, an implication
goal P ⊃ G�c can be solved in the stack P1| . . . |Pk if G�c can be solved in the stack
P1| . . . |Pk|P and ¬(P⊃G)�c can be solved in the stack P1| . . . |Pk if ¬G�c can be solved
in the stack P1| . . . |Pk|P. It may be noted that this semantics follows the intuition of
static visibility, i.e. for solving a goal in a rule of a given program unit, we can only use
rules from more external program units.

Our semantics is given by the following mutually recursive definitions.

Definition 2. Let S be a stack of programs and G�c a goal. S "s G�c can be proved
with computed answer c′ if and only if, there exists a finite sequence of applications
of the derivation relation � of the form S "s G�c � . . . . � S "s �c′, FETΣ |= c′∃ and
FETΣ |= (c′ → c)∀.

Definition 3. The derivation relation � over sequents is defined as follows:

1. P1| . . . |Pk "s G1, p(x),G2�c � P1| . . . |Pk "s G1,G2�c′ if there exists i ∈ {1, . . . ,k}
such that there exists a (renamed apart) clause p(x) ← G�d ∈ De f (Pi, p) and
P1| . . . |Pi "s G�c∧d can be proved with computed answer c′.

2. P1| . . . |Pk "s G1,¬p(x),G2�c � P1| . . . |Pk "s G1,G2�c′ if, and only if, the following
two conditions hold:
(a) For every i ∈ {1, . . . ,k} there exists a satisfiable constraint ci, FETΣ |= (ci →

c)∀ such that for every (renamed apart) clause p(x) ← Gi
1, . . . ,G

i
mi

�di ∈



A Transformational Semantics of Static Embedded Implications of NLP 139

De f (Pi, p) there exists Ji ⊆ {1, . . . ,mi} such that ∀ j ∈ Ji : P1| . . . |Pi "s ¬Gi
j�di

can be proved with computed answer di
j and FETΣ |= (ci →¬di ∨ j∈Ji

di
j)
∀.

This means that P1| . . . |Pi "s ¬p(x)�c � P1| . . . |Pi "s �ci.
(b) FETΣ |= (c′ → k

i=1 ci)∀.
3. P1| . . . |Pk−1 "s G1,Pk ⊃G,G2�c � P1| . . .|Pk−1 "s G1,G2�c′ if P1| . . . |Pk "s G�c can

be proved with computed answer c′.
4. P1| . . . |Pk−1 "s G1,¬(Pk ⊃ G),G2�c � P1| . . . |Pk−1 "s G1,G2�c′ if P1| . . .
|Pk "s ¬G�c can be proved with computed answer c′.

Each item in this definition is called a derivation step.

We assume that whenever an expression of the form ¬¬a�c occurs in the right-hand
side of a sequent, it denotes a�c. Next we give the intuition behind our operational
semantics.

In the rest of this section we present some examples to show how the operational
semantics works. Mainly derivation steps 3.2 and 3.3 will be illustrated.

Example 3. Let P = {p(x)← �x = a} and Q = {p(x)← �x = b}. The derivation P "s

Q⊃ ¬p(x) � P "s �x �= a∧ x �= b is justified because the following subderivations:

– P|Q "s ¬p(x) � P|Q "s �x �= b.
– P "s ¬p(x) � P "s �x �= a

The following example adapts the one presented in [6].

Example 4. Let P = {r← Q1⊃¬p(x),Q2⊃¬q(x)}, Q1 = {p(x)← p(x); p(x)← �x =
a} and Q2 = {q(x)← q(x)�x = a;q(x)← ¬s(x);s(x)← �x = a}. The derivation P "s

¬r � P "s �t does exist because, considering the clause defining r in P and condition
(a) in Definition 3.2, we have that P "s ¬(Q1 ⊃ ¬p(x)) can be proved with computed
answer x = a, P "s ¬(Q2 ⊃ ¬q(x)) can be proved with computed answer x �= a and
FETΣ |= (t→ x = a∨ x �= a)∀.

The following example shows a failed derivation.

Example 5. Let P = {p(x)← �x = a} and Q = {p(x)← ¬r(x);r(x)← �x = a} Starting
a derivation from the sequent P"s Q⊃¬p(x) we can not obtain a computed answer. The
reason is that P|Q "s r(x) � P|Q "s �x = a, therefore P|Q "s ¬p(x) � P|Q "s �x = a
and P "s ¬p(x) � P "s �x �= a. Hence, condition (b) in Definition 3.2 does not hold
because there is not a satisfiable constraint less general than x = a∧ x �= a.

4 A Transformational Semantics

In this section we define the semantics of extended programs in terms of a translation
into the class of (standard) normal programs. This approach has several advantages. On
one hand, we can (indirectly) provide a declarative semantics of extended programs,
without having to use a more complex logic (see, e.g. [10] where a modal logic is
used). In particular, it is enough to consider the declarative semantics of the translated
program. On the other hand, this transformational semantics is easy to implement. This



140 E. Pasarella et al.

means that we can easily build this kind of extension on top of a standard logic pro-
gramming language.

The idea underlying this translation is quite simple. On one hand, we rename all the
predicates inside the implications to new fresh names. In addition, we add rules of the
form pi(x) ← p j(x) where pi and p j are the names for the same predicate p in the
program units Pi and Pj, respectively, and where Pj includes Pi.

Hereafter we assume that programs are defined over the signature Σ =< FS,PS >.
In the following definitions PS′ is a set of “fresh” predicates, that is, PS∩PS′ = /0.

Definition 4. Let P be a program. Then, a renaming for predicates with respect to P is
a substitution of the form σ : PS∪PS′ → PS∪PS′, such that for all p ∈ PS∪PS′

σ(p) =
{

gen(p) if De f (P, p) �= /0
p otherwise

(1)

where gen : PS∪PS′ → PS′ is a function such that whenever it is applied returns a
new predicate symbol in PS′ never used before. This definition is extended in order
to apply a renaming to goals, clauses and programs as follows σ(p(x)) = σ(p)(x),
σ(¬p(x)) = ¬σ(p)(x), σ(P ⊃ G) = σ(P) ⊃ σ(G), σ((G1, . . . ,Gm)) = (σ(G1), . . . ,
σ(Gm)), σ(p(x) ← G�c) = σ(p)(x) ← σ(G)�c, and σ({C1, . . . ,Cn}) = {σ(C1), . . . ,
σ(Cn)}.

Notice that the function gen is a generator of “fresh” predicate symbols. Also, one
can compose σ1σ2 . . .σk(p) even though each σi, for i ∈ {1, . . . ,k}, is not necessarily
defined with respect to the same program. Moreover, the definition of gen ensures that
a never used before predicate symbol will be obtained each time.

For the sake of simplicity we adopt the variable substitution notation. This means
we denote σ(p) as pσ and similarly for goals, clauses and programs. Also, we denote
the composition of renamings σ1 . . .σi as σi.

Definition 5. The translation function T : P (C⊃Σ′ ) → P (CΣ′), where Σ′ =< FS,PS∪
PS′> is defined in terms of the functions Tκ : C⊃Σ′ →P (CΣ′) and Tγ : G⊃

Σ′ →GΣ′ ×P (CΣ′)
as follows. For every program P,

T(P) = /0 if P = /0
T(P) = ∪n

i=1Tκ(Ci) if P = {C1, . . . ,Cn}

such that

1. Tκ(p(x)← G�c) = {p(x)← G
′
�c}∪P′ where Tγ(G) = 〈G′,P′〉

2. If G = t then Tγ(G) = 〈t, /0〉
3. If G = p(x) then Tγ(G) = 〈p(x), /0〉
4. If G = ¬p(x) then Tγ(G) = 〈¬p(x), /0〉
5. If G = Q⊃ G0 then Tγ(G) = 〈G′,T(QσG)∪Q′ ∪ ext(σG)〉 where

(a) σG is a renaming w.r.t. Q
(b) Tγ(G0σG) = 〈G′,Q′〉
(c) ext(σG) = {pσG(x)← p(x) | σG(p) �= p∧De f (Q, p) �= /0}



A Transformational Semantics of Static Embedded Implications of NLP 141

6. For all extended goals G, G′ occurring in P, if G �= G′ then for each p in PS either
σG(p) �= σG′(p) or σG(p) = σG′(p) = p

This definition is extended to G = (G1, . . . ,Gm) as follows
Tγ(G) = 〈(G′1, . . . ,G′m),∪m

i=1P′i 〉 where for each i in {1, . . . ,m} Tγ(Gi) = 〈G′i,P′i 〉.

Notice that the set ext(σ) links renamed predicates with their “old” names in such a way
that the visibility through innermost to outermost program is preserved. The following
example illustrates how the translation algorithm works.

Example 6. Let P = {p(x)← �x = a; q← {p(x)← �x = b}⊃¬p(x)}. The translation
of P is the following:

1. T(P) = Tκ(p(x)← �x = a)∪Tκ(q← {p(x)← �x = b} ⊃ ¬p(x))
2. Tκ(p(x)← �x = a) = {p(x)← �x = a}
3. Tκ(q← {p(x)← �x = b} ⊃ ¬p(x)) = {q← G′}∪P′

where Tγ({p(x)← �x = b} ⊃ ¬p(x)) = 〈G′,P′〉
Now, let us see how to obtain Tγ({p(x) ← �x = b} ⊃ ¬p(x)). In this case, we
have to use Definition 5.5. On one hand, it is necessary a renaming w.r.t. the pro-
gram {p(x)← �x = b}. Let σ be such a renaming. Therefore, σ(¬p(x))≡¬pσ(x)
and σ({p(x)← �x = b}) = {pσ(x)← �x = b}. On the other hand, using Defini-
tion 5.4, Tγ(¬pσ(x)) = 〈¬pσ(x), /0〉, ext(σ) = {pσ(x)← p(x)} and T({pσ(x)←
�x = b}) = {pσ(x)← �x = b}. So, we obtain Tγ({p(x)← �x = b} ⊃ ¬p(x)) =
〈¬pσ(x),{pσ(x)← �x = b; pσ(x)← p(x)}〉 and, consequently, we have that

T(P) = {p(x)← �x = a; q← ¬pσ(x); pσ(x)← �x = b; pσ(x)← p(x)}.
Since derivation steps are defined in terms of sequents in which stacks of programs
occur, it is necessary to extend the function T.

Definition 6. Let S and Sk = P1| . . . |Pk, k≥ 1, be the set of all the possible sequences of
programs and a sequence of programs, respectively. Then, T̂ : S →P (CΣ′) is inductively
defined, as follows:

1. T̂(P1) = T(P1)
2. T̂(Sk−1|Pk) = T̂(Sk−1)∪T(Pkσk)∪ ext(σk) where σ1 is the identity renaming and

σk, k > 1, is a renaming with respect to Pkσk−1.

The following example illustrates how T̂ works.

Example 7. Let P1 = {p← q} and P2 = {s; p← ¬t; p← s}
T̂(P1|P2) = T̂(P1)∪T(P2σ1σ2)∪ ext(σ2) where σ2 is a renaming with respect to P2σ1.
From Definition 6 is easy to see that

T̂(P1|P2) = {p← q}∪{sσ2; pσ2 ← ¬t; pσ2 ← sσ2}∪{sσ2 ← s; pσ2 ← p}.

5 Soundness and Completeness

In this section we prove the soundness and completeness of the transformational se-
mantics defined in previous section. We begin with the completeness theorem.



142 E. Pasarella et al.

Theorem 1. Let Sk = P1| . . . |Pk, k ≥ 1 and G be a stack of programs and a goal, re-
spectively. Then, If Sk "s G�c can be proved with computed answer c′, then there
exist c1, . . . ,cm SLDFA-computed answers of ←G

′
�c with respect to T̂(Sk)∪ P′ and

FETΣ |= (c′ → c1∨ . . .∨ cm)∀, where Tγ(Gσk) = 〈G′,P′〉.

Proof. We proceed by induction on the number of derivation steps, n which is the sum
of the number of derivation steps in the main derivation and the number of derivation
steps in each subderivation. The theorem trivially holds when n = 0. Assume the theo-
rem holds for a number of derivation steps ≤ n. Let us prove for n + 1. We proceed by
case analysis on G.

1. G = p(x). Thus, there exists i ∈ {1, . . . ,k} such that there exists a (renamed

apart) clause p(x)← G
i
�di ∈ De f (Pi, p) and Si "s G

i
�c∧ di can be proved with

computed answer c′. By the induction hypothesis there exist c1, . . . ,cmi SLDFA-

computed answers of ←G
′i

�c∧ di with respect to T̂(Si)∪P′i and FETΣ |= (c′ →
c1 ∨ . . . ∨ cmi)

∀ where Tγ(G
iσi) = 〈G′i,P′i 〉. Additionally, we have that for each

clause p(x)← G
i
�di in De f (Pi, p) there exists the corresponding translated clause

in T̂(Sk). That is, pσi(x)← G
′i

�di, where Tγ(G
iσi) = 〈G′i,P′i 〉, P′i ⊆ T̂(Sk). Thus,

since Tγ(pσk(x)) = 〈pσk(x), /0〉 and using (if needed) those clauses in ext(σ j), for
j ∈{i+1, . . . ,k}, we can construct the following SLDFA-derivations of←pσk(x)�c
with respect to T̂(Sk):

←pσk(x)�c;
k− i steps︷︸︸︷. . . ;←pσi(x)�c;←G

′i
�c ∧ di; . . .←�c j where j ∈ {1, . . . ,mi} and

FETΣ |= (c′ → c1∨ . . .∨ cmi)
∀

2. G = ¬p(x). Therefore Sk "s ¬p(x)�c with computed answer c′. That is for every
i ∈ {1, . . . ,k} there exists a satisfiable constraint ci, FETΣ |= (ci → c)∀ such that for
every (renamed apart) clause p(x)← Gi

1, . . . ,G
i
mi

�di ∈De f (Pi, p) there exists Ji ⊆
{1, . . . ,mi} such that for each j ∈ Ji : Si "s ¬Gi

j�di can be proved with computed

answer di
j, FETΣ |= (ci →¬di∨ j∈Ji

di
j)
∀ and FETΣ |= (c′ → k

i=1 ci)∀. By the in-
duction hypothesis, for every i ∈ {1, . . . , k}, for each clause p(x)← Gi

1, . . . ,G
i
mi

�di

in De f (Pi, p) and for each j ∈ Ji there exists an SLDFA finitely failed tree of
←G′ij �di with respect to T̂(Si)∪P′ij ⊆ T̂(Sk) where Tγ(Gi

jσ
i) = 〈G′ij ,P′ij 〉. Addition-

ally, there exists a clause pσi(x)← G′i1 , . . . ,G
′i
mi

�di, where Tγ((Gi
1, . . . ,G

i
mi

)σi) =
〈(G′i1 , . . . ,G′imi

), mi
l=1 P′il 〉 and mi

l=1 P′il ⊆ T̂(Sk). Now, using these clauses and (if
needed) those ones in ext(σl), for l ∈ {i + 1, . . . ,k}, we can construct an SLDFA
finitely failed tree of ←pσk(x)�c with respect T̂(Sk) as follows. First, we construct
the corresponding prefailed tree and then, we select any cross section of this tree
and instantiate it by k

i=1 ci obtaining an SLDFA finitely failed tree of ←pσk(x)�c
with respect T̂(Sk). Hence, since FETΣ |= (c′ → k

i=1 ci)∀, there exists an SLDFA-
derivation of ←¬pσk(x)�c with respect to T̂(Sk) with computed answer c′.

3. G = Q ⊃ GQ. Therefore, Sk "s Q ⊃ GQ�c with computed answer c′ and the num-
ber of derivation steps used in this derivation is n + 1. Thus, Sk|Q "s GQ�c can
be proved with computed answer c′ in a number of steps less or equal than
n and by the induction hypothesis, there exist c1, . . . ,cm SLDFA-computed an-
swers of ←G′Q�c with respect to T̂(Sk|Q) ∪ P′Q and FETΣ |= (c′ → c1 ∨ . . . ∨



A Transformational Semantics of Static Embedded Implications of NLP 143

cm)∀ where Tγ(GQσkσQ) = 〈G′Q,P′Q〉. By definition of T̂, T̂(Sk|Q) = T̂(Sk) ∪
T(QσkσQ) ∪ ext(σQ), and, by definition of Tγ, Tγ((Q ⊃ GQ)σk) = Tγ(Qσk ⊃
GQσk) = 〈G′Q,P′′〉, where P′′ = T(QσkσQ) ∪P′Q ∪ ext(σQ). Consequently, there

exist c1, . . . ,cm SLDFA-computed answers of ←G′Q�c with respect to T̂(Sk)∪P′′

and FETΣ |= (c′ → c1∨ . . .∨ cm)∀ where Tγ((Q⊃ GQ)σk) = 〈G′Q,P′′〉.
4. G = (G1, . . . ,Gl). Therefore, for each i ∈ {1, . . . , l}, Sk "s Gi�c can be proved with

computed answer c′i, FETΣ |= (c′ → c′i)
∀ in a number of derivation steps less or

equal than n. By the induction hypothesis, for every i ∈ {1, . . . , l}, there exist
ci

1, . . . ,c
i
li

SLDFA-computed answers of ←G′i�c with respect to T̂(Sk)∪P′i where

Tγ(Giσk) = 〈G′i,P′i 〉 and FETΣ |= (c′i → ci
1∨ . . .∨ ci

li
)∀. Then, there exist c1, . . . ,cm

SLDFA-computed answers of ←G′1, . . . ,G
′
l �c with respect to T̂(Sk) ∪ l

i=1 P′i .
By definition of Tγ, Tγ((G1, . . . ,Gl)σk) = 〈(G′1, . . . ,G′l),

l
i=1 P′i 〉 and, addition-

ally FETΣ |= (c′ → ci
1 ∨ . . .∨ ci

li
)∀. Consequently, there exist c1, . . . ,cm SLDFA-

computed answers of←G′1, . . . , G′l �c with respect to T̂(Sk)∪ l
i=1 P′i and FETΣ |=

(c′ → c1∨ . . .∨ cm)∀. �

In particular, when the sequence Sk is a simple program P and the goal is of the form
��c the next corollary is obtained:

Corollary 1. Let P be a program and ��c a goal. If P "s ��c can be proved with com-
puted answer c′, then there exist c1, . . . ,cm SLDFA-computed answers of ��c with re-
spect to T(P), and FETΣ |= (c′ → c1∨ . . .∨ cm)∀.

This corollary establishes that given a program P, for each normal goal that can be
(statically) proved from P there exists a successful SLDFA derivation with respect to
the translated program T(P). This result can be directly generalized to goals of the form
��c. In the case of goals in which embedded implications occur it is necessary to prove
the following corollary.

Corollary 2. Let P and G be a program and a goal, respectively. If P "s G�c can be
proved with computed answer c′, then there exist c1, . . . ,cm SLDFA-computed answers
of G′�c with respect to P′, where Tγ(P⊃G)=〈G′,P′〉 and FETΣ |= (c′→c1∨ . . .∨cm)∀.

Proof. From the deduction theorem [12] and the Definition 1, we have that P "s G
implies /0 "s (P⊃ G). The proof follows from Definition 6.1 and Theorem 1. �

Next theorem establishes the soundness of the transformational semantics.

Theorem 2. Let Sk = P1| . . . |Pk, k ≥ 1 and G be a stack of programs and a goal, re-
spectively. If Tγ(Gσk) = 〈G′,P′〉 and there exist c1, . . . ,cm SLDFA-computed answers

of ←G
′
�c with respect to T̂(Sk)∪ P′, then Sk "s G�c can be proved with computed

answer c′ and FETΣ |= (c′ → c1∨ . . .∨ cm)∀.

Proof. As in previous theorem, we proceed by induction on the number of SLDFA-
derivation steps, n. The base step is when n = 0. In this case the theorem trivially holds.

Assume the theorem holds whenever the number of SLDFA-derivation steps is ≤ n.
Let us prove for n + 1. We proceed by case analysis on G.



144 E. Pasarella et al.

1. G = p(x). Therefore, Tγ(Gσk) = 〈pσk(x), /0〉, where De f (T̂(Sk), pσk) �= /0 and there
exists c1, . . . ,cm SLDFA-computed answers of←pσk(x)�c with respect to T̂(Sk) in
n+1 derivations steps. Then, there exists a (renamed apart) clause pσk(x)← ��d ∈
De f (T̂(Sk), pσk) such that c∧ d is a satisfiable constraint and thus the considered
derivations are of the form:
←pσk(x)�c;←��c∧d; . . . ;←�cl , l ∈ {1, . . . ,m}
There are two cases:
(a) There exists a (renamed apart) clause p(x) ← Gp�d ∈ De f (Pk, p) and

Tγ(Gpσk) = 〈�,P′p〉 and P′p ⊆ T̂(Sk). Hence, there exist c1, . . . ,cm SLDFA-

computed answers of ←��c∧ d with respect to T̂(Sk) in a number of deriva-
tions steps less or equal than n. Applying the induction hypothesis we obtain
that Sk "s Gp�c∧d can be proved with computed answer c′.

(b) De f (Pk, p) = /0 and there exists i ∈ {1, . . . ,k}, i �= k such that p(x)← G
i
�d ∈

De f (Pi, p) and Tγ(G
iσk) = 〈�i

,P′〉 and P′ ⊆ T̂(Sk). Then, considering those
clauses in ext(σ j), j ∈ {i+1, . . . ,k}, the considered derivations are of the form:

←pσk(x)�c; pσk−1(x)�c;
k− i steps︷︸︸︷. . . ;←pσi(x)�c;←�

i
�c∧d; . . .←�cl , l ∈ {1, . . . ,m}

Hence, there exist c1, . . . ,cm SLDFA-computed answers of ←�
i
�c∧d with re-

spect to T̂(Si) in a number of derivations steps less or equal than n and by the

induction hypothesis it follows that Si "s G
i
�c∧d with computed answer c′.

Consequently, Sk "s p(x)�c can be proved with computed answer c′ and FETΣ |=
(c′ → c1∨ . . .∨ cm)∀.

2. G = ¬p(x). Therefore, Tγ(Gσk) = 〈¬pσk(x), /0〉. Thus, there exists an SLDFA-
finitely failed tree of ←pσk(x)�c with respect to T̂(Sk). Let c′ the correspond-
ing failed answer. This implies that for each i ∈ {1, . . . ,k} and for all clause
p(x) ← Gi

1, . . . ,G
i
mi

�di in De f (Pi, p), considering their corresponding trans-

lated clauses pσi(x) ← �i
1, . . . , �

i
mi

�di ∈ T̂(Sk), where Tγ((Gi
1, . . . , Gi

mi
)σk) =

〈(�i
1, . . . , �

i
mi

), mi
l=1 Pl〉, mi

l=1 Pl ⊆ T̂(Sk) there exists Ji ⊆ {1, . . . , mi} such that for
each j ∈ Ji, there exists an SLDFA-finitely failed tree of ←�i

j�di with respect

to T̂(Sk). Let di
j the corresponding failed answers, then there exists ci such that

FETΣ |= (ci →¬di ∨ j∈Ji
di

j)
∀ and FETΣ |= (c′ → k

i=1 ci)∀. The constraint ci is
one of those constraints that can be used to instantiate the SLDFA-subtree whose
root is←pσi(x)�c. Besides, by the definition of failed answer and the by the induc-
tion hypothesis Sk "s ¬Gi

j�di can be proved with computed answers di
j. Therefore,

Sk "s ¬p(x)�c can be proved with computed answer c′.
3. G = Q1⊃ . . .⊃Qm⊃ �. Therefore, there exist c1, . . . ,cm SLDFA-computed answers

of ←�σk+m(x)�c with respect to T̂(Sk)∪ m
i=1 Q′i in n + 1 derivations steps where

Tγ(Gσk) = 〈�σk+m, m
i=1 Q′i〉. Hence, there are two possibilities depending on the

kind, either positive or negative, of the literal �σk+m and using similar arguments
as in cases 1 and 2 of this proof, we obtain that Sk|Q1| . . . |Qm "s �σk+m�c can be
proved with computed answer c′ and FETΣ |= (c′ → c1∨ . . .∨cm)∀. Consequently,
Sk "s Q1 ⊃ . . . ⊃ Qm ⊃ ��c can be proved with computed answer c′ and FETΣ |=
(c′ → c1∨ . . .∨ cm)∀.

4. G = (G1, . . . ,Gl). Then, there exist c1, . . . ,cm SLDFA-computed answers of
←�1σk+ j1 , . . . , �lσk+ jl �c with respect to T̂(Sk) ∪ l

i=1 Qi in n + 1 derivations



A Transformational Semantics of Static Embedded Implications of NLP 145

steps, where T̂((G1, . . . ,Gl)σk) = T̂((G1σk, . . . ,Glσk)) = 〈(�1σk+ j1 , . . . , �lσk+ jl ),
l
i=1

Qi〉. That is, for i ∈ {1, . . . , l} Tγ(Giσk) = 〈�iσk+ ji ,Qi〉 with ji ≥ 0. By definition
of the SLDFA operational semantics, there exist c1

1, . . . ,c
1
m1

SLDFA-computed an-

swers of ←�1σk+ j1 �c with respect to T̂(Sk)∪Q1 in a number of derivation steps
less or equal than n. Thus, by induction hypothesis, Sk "s G1�c can be proved
with computed answer d and FETΣ |= (d → c1

1 ∨ . . .∨ c1
m1

)∀. Additionally, there
exist d1, . . . ,dm′ SLDFA-computed answers of ←�2σk+ j1 , . . . , �lσk+ jl �d with re-
spect to T̂(Sk)∪ l

i=2 Qi in a number of derivations steps less or equal than n,
where for every j ∈ {1, . . . ,m′} FETΣ |= (d j → c1 ∨ . . .∨ cm)∀. Hence, by induc-
tion hypothesis, Sk "s G2, . . . , Gl�d can be proved with computed answer c′ and
FETΣ |= (c′ → d1 ∨ . . .∨ dm′)∀. Consequently, Sk "s G1, . . . ,Gl�c can be proved
with computed answer c′ and FETΣ |= (c′ → c1∨ . . .∨ cm)∀. �

Acknowledgements. This work has been supported by the CICYT project GRAM-
MARS (ref. TIN2004-07925-C03-01).

References

1. R. Arruabarrena and M. Navarro.: On extended logic language supporting program struc-
turing. In Proc. of the Joint Conference on Declarative Programming, APPIA-GULP-
PRODE’96. (1996) 191–203

2. R. Arruabarrena, P. Lucio, and M.Navarro, M.: A Strong Logic Programming View for Static
Embedded Implications. In Proc. of the Second International Conference on Foundations of
Software Science and Computation Structures, FOSSACS’99. LNCS 1578, Springer (1999)
56–72

3. M. Baldoni, L. Giordano, and A. Martelli.: Translating a modal Language with embedded
implication into Horn clause logic. In Proc. of the 5th International Workshop on Extensions
of Logic Programming, LNCS 1050, Springer (1996) 19–33

4. A. J. Bonner and L. T. McCarty.: Adding negation-as-failure to intuitionistic logic program-
ming. In Proc. of the North American Conference on Logic Programming, NACLP’90 (1990)
681–703

5. M. Bugliesi, E. Lamma, and Mello Paola.: Modularity in logic programming. Journal of
Logic Programming 19/20 (1994) 443–502

6. W. Drabent.: What is a failure? An approach to constructive negation. Acta Informática 32
(1995) 27–59,

7. M. Gabbay.: N–PROLOG: An extension of Prolog with hypothetical implications II. Logical
foundations and negation as failure. Journal of Logic Programming 1(4) (1985) 251–283

8. M. Gabbay and U. Reyle.: N–PROLOG: An extension of Prolog with hypothetical implica-
tions. I. Journal of Logic Programming 1(4) (1985) 319–355

9. L. Giordano, A. Martelli, and G. Rossi.: Extending Horn clause logic with implication goals.
Theoretical Computer Science 95(1) (1992) 43–74

10. L. Giordano and A. Martelli.: Structuring Logic Programs: A Modal Approach. Journal of
Logic Programming 21 (1994) 59–94

11. L. Giordano and N. Olivetti.: Combining negation as failure and embedded implication in
logic programs. Journal of Logic Programming 36 (1998) 91–147

12. P. Lucio.: Structured sequent calculi for combining intuitionistic and classical first-order
logic. In Proc. of the Third International Workshop on Frontiers of Combining Systems, Fro-
CoS ’00 LNAI 1794, Springer (2000) 88–104



146 E. Pasarella et al.

13. L.T. McCarty.: Clausal intuitionistic logic I. Fixed point semantics. Journal of Logic Pro-
gramming 5 (1988) 1–31

14. L.T. McCarty.: Clausal intuitionistic logic II. Tableau proof procedures. Journal of Logic
Programming 5 (1988) 93–132

15. D. Miller.: A logical analysis of modules in logic programming. Journal of Logic Program-
ming 6(1-2) (1989) 79–108

16. L. Monteiro and A. Porto.: A language for contextual logic programming. In Logic Program-
ming Languages: constraints, functions and objects. MIT Press (1993) 115–147

17. G. Nadathur and D. Miller.: Higher–order logic programming. In Handbook of Logic in Ar-
tificial Intelligence and Logic Programming, Vol 5. Clarendon Press (1998) 499–590

18. M. Navarro.: From modular Horn programs to flat ones: a formal proof for the propositional
case. In Proc. of the Second International Symposium on Innovation in Information and
Communication Technology, ISIICT2004 (2004) Technical Report UPV-EHU/ LSI/ TR 01-
2004. http://www.sc.ehu.es/marisa.

19. F. Orejas, E. Pasarella, and E. Pino.: Semantics of normal logic programs with embed-
dded implications. In Proc. of the 17th International Conference, ICLP 2001, LNCS 2237,
Springer (2001) 255–268



Converting One Type-Based Abstract Domain
to Another

John P. Gallagher1, Germán Puebla2, and Elvira Albert3

1 Department of Computer Science, Univ. of Roskilde
jpg@ruc.dk

2 School of Computer Science, Technical Univ. of Madrid
german@fi.upm.es

3 School of Computer Science, Complutense Univ. of Madrid
elvira@sip.ucm.es

Abstract. The specific problem that motivates this paper is how to ob-
tain abstract descriptions of the meanings of imported predicates (such
as built-ins) that can be used when analysing a module of a logic program
with respect to some abstract domain. We assume that abstract descrip-
tions of the imported predicates are available in terms of some “standard”
assertions. The first task is to define an abstract domain corresponding to
the assertions for a given module and express the descriptions as objects
in that domain. Following that they are automatically transformed into
the analysis domain of interest. We develop a method which has been
applied in order to generate call and success patterns from the CiaoPP
assertions for built-ins, for any given regular type-based domain. In the
paper we present the method as an instance of the more general problem
of mapping elements of one abstract domain to another, with as little
loss in precision as possible.

1 Motivation

When performing static analysis of a logic program, the source code for some
parts of it may be inaccessible for some reason (the code might be in exter-
nal modules, built-in system predicates, foreign-language libraries, and so on).
In order to analyse such a program accurately, abstract descriptions of the be-
haviour of the missing code have to be supplied, otherwise some coarse over-
approximation (or sometimes under-approximation) has to be used.

It can take considerable effort to specify the properties of built-ins and li-
brary predicates over a given abstract domain, and those properties need to be
specified for each domain for which the calling code is to be analysed. Our in-
tention is to specify once and for all the properties of library predicates, using a
general and expressive abstract domain of descriptions; these specifications are
then converted to another abstract domain when a particular analysis is to be
performed.

The following general principles of abstract domain construction [1] are ap-
plied. Given two abstract interpretations of a concrete semantics, say A1 and

P.M. Hill (Ed.): LOPSTR 2005, LNCS 3901, pp. 147–162, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



148 J.P. Gallagher, G. Puebla, and E. Albert

A2, with abstraction and concretisation functions α1, γ1, α2 and γ2 respectively,
the aim is to translate descriptions in A1 to descriptions in A2. The best rep-
resentative of an element a1 ∈ A1 in A2 is α2(γ1(a1)). If we can implement a
function equivalent to this we can just apply it to descriptions expressed using
elements of A1 to obtain descriptions in A2. For the abstract domains that we
consider, namely those based on regular types, we show that the function can
be implemented by constructing the reduced product domain A1 �A2, with con-
cretisation function γ�. Our method can be presented as the computation, for a
given element a1 ∈ A1, of the corresponding element a� ∈ A1 � A2, such that
γ�(a�) = γ1(a1), and then computing the most precise element a2 in the domain
of A2 such that γ�(a�) ' γ2(a2). a1 has an exact representative in A1 �A2 but
we cannot in general find an exact representative of a� in A2. In our method,
A1 is the general-purpose domain, while A2 is a particular analysis domain.

Assertions in CiaoPP. In the CiaoPP system [2] an assertion language is provided
that allows properties of predicates to be stated in a flexible, general language.
The properties of built-ins and many library predicates have been expressed in
this assertion language. The question addressed in this work is how to use such
information in an analysis over a (new) particular abstract domain. The method
described in this paper allows us to take any given assertions about a module’s
imported predicates and translate them safely (and accurately) into the domain
under consideration. We use domains based on regular types, realised as pre-
interpretations [3], using a subset of the CiaoPP assertion language to explain
the approach.

In the CiaoPP assertion language, approximations of the success set of a pred-
icate can be specified, among many other aspects of computation. We do not
enter into the notation for the assertions here; detailed examples can be seen in
[2]. We can extract this information in the form of a set of abstract atoms of
the form p(d1, . . . , dn), for a predicate p/n, where d1, . . . , dn are the names of
abstract term descriptions defined within the CiaoPP system.

Example 1. The success of length/2 is described by {length(list, int)}. Here int
is a primitive type and list is defined by a set of regular type rules. If the analysis
of interest concerns modes g (ground) and nong (non-ground), then this descrip-
tion would be transformed automatically into {length(g, g), length(nong, g)}. In
order to achieve this transformation we need to derive the information that a
list can be either ground or non-ground, while an int is ground.

An alternative approach (currently pursued in the CiaoPP system) is to define
relationships between analysis domains in advance (a type lattice) [2]. For ex-
ample, the fact that arithmetic expressions are ground can be pre-defined. Once
that is done, an assertion, say, that the predicate < /2 succeeds with both argu-
ments bound to arithmetic expressions can safely be translated into the modes
domain as an assertion that both arguments are ground.

In contrast, the approach defined here allows arbitrary relationships to be
derived automatically, for user-defined types as well as pre-defined ones. We



Converting One Type-Based Abstract Domain to Another 149

focus here on transforming assertions about success of predicates, but the same
approach can be followed for assertions on calls.

Related Work. The most closely related work is concerned with systematically
constructing abstract domains from other domains [1, 4]. These principles have
been applied in combining different abstractions from primitive operations in
the ASTRÉE analyser (see e.g [5]). We make use of the reduced product in this
paper, but domain construction is not our main aim, but rather to transfer infor-
mation from one given domain to another given domain. Although the principles
are well understood (see Section 2), we do not know of other work that applies
them systematically to this problem.

Section 2 explains the general principles behind our solution. In Section 3 we
review the kind of abstract domain that we deal with, namely, domains based
on regular types and define a general solution for such domains. In Section 4
we describe how we construct a single set of regular types from the various
different kinds of assertion in the CiaoPP assertion language, and thus define
the standard domain. Section 5 presents the procedure for mapping descriptions
in the standard domain into any given user-supplied domain based on regular
types. The soundness and precision of the procedure are established by relating
it to the general solution. Section 6 contains the results of some experiments
in transforming CiaoPP assertions into various simple mode and type domains.
Finally in Section 7 we present conclusions and future work.

2 General Characterisation of the Problem

We restrict our attention to abstract interpretations based on a Galois connec-
tion, which is given by a 4-tuple 〈(D,'D), (A,'A), α, γ〉 where (D,'D) and
(A,'A) are partially ordered sets, the concrete and abstract domain of inter-
pretation respectively, and α : D → A and γ : A → D are adjoined functions
satisfying

∀x ∈ D, y ∈ A : (α(x) 'A y)⇐⇒ (x 'D γ(y)).

α(x) represents the best possible description of some concrete object x in the
abstract domain A, while γ(y) represents the most imprecise element of the
concrete domain D that is described by some abstract object y.

If (D,'D) and (A,'A) are complete lattices, then the functions α and γ
determine each other; in particular we have α(x) = � {y | x 'D γ(y)}, where �
is the meet operator in (A,'A).

Suppose 〈(D,'D), (A1,'A1), α1, γ1〉 and 〈(D,'D), (A2,'A2), α2, γ2〉 are two
abstract interpretations with same concrete domain. Then given an element a1 ∈
A1, we can compute the best representation in A2 of a1 as α2(γ1(a1)).

In the applications considered in this paper, the domains are complete lattices.
We are not provided explicitly with the abstraction function α. Therefore, the
expression α2(γ1(a1)) mentioned above is rewritten as

α2(γ1(a1)) = � {y ∈ A2 | γ1(a1) 'D γ2(y)}



150 J.P. Gallagher, G. Puebla, and E. Albert

This expression suggests that all elements y of the set A2 have to be enumer-
ated, which is not practical in general. A practical algorithm for computing the
required element of A2 is obtained in the remainder of the paper, for domains
that are based on pre-interpretations.

3 Analysis Domains Based on Regular Types

As shown in [3], any set of regular types (a non-deterministic finite tree automa-
ton) over a logic program’s signature can be used to build a pre-interpretation,
and hence an abstract interpretation of the program. In this section we sum-
marise this family of abstract interpretations and some key properties.

A set of regular types is defined by a set of type symbols Q, a signature Σ, and a
set of rules of the form f(d1, . . . , dn)→ d, where f/n ∈ Σ and d, d1, . . . , dn ∈ Q.
A set of regular type definitions can be seen as a finite tree automaton (FTA).
For our purposes we regard the two notions as interchangeable, and speak of
the states of an FTA as “types”. (We assume that every state of an FTA is an
accepting (or final) state.) Let TermΣ be the set of terms constructible from the
function symbols in Σ. Given a state (type) d, let L(d) ⊆ TermΣ be the set of
terms accepted by d; that is, for all t ∈ L(d) there is a bottom-up derivation
starting at t and ending at d. We can also think of L(d) as standing for the terms
of “type” d. Full details of these concepts can be found in the literature [6].

It is known [6] that an arbitrary FTA can be transformed to an equivalent
bottom-up deterministic FTA (or DFTA). The defining condition of a DFTA is
that there are no two rules with the same left hand side. An arbitrary FTA
can also be completed, meaning that it is extended so that there exists a rule
f(d1, . . . , dn) → d for each choice of f, d1, . . . , dn. (An extra state may need to
be added to the FTA.) Let Q be the set of states of a complete DFTA. Thus
{L(d) | d ∈ Q} is a disjoint partition of TermΣ . That is, each t ∈ TermΣ is
accepted by exactly one state in a bottom-up derivation in a complete DFTA.

Example 2. Let Σ = {[]/0, [.|.]/2, a/0, s/1}. The following rules define a com-
plete DFTA over Σ:

{[]→ list, [list|list]→ list, [nonlist|list]→ list,
[list|nonlist]→ nonlist, [nonlist|nonlist]→ nonlist, a→ nonlist,
s(list)→ nonlist, s(nonlist)→ nonlist}

The rules define two types list and nonlist. Each term in TermΣ is accepted
by one of these two. This induces a partition of TermΣ into two disjoint sets,
lists and non-lists. The above DFTA could be obtained by determinizing and
completing the following FTA:

{[]→ list, [dynamic|list]→ list, [] → dynamic,
[dynamic|dynamic]→ dynamic, s(dynamic)→ dynamic, a → dynamic}

Note that the two types list and dynamic are not disjoint, in fact L(list) ⊂
L(dynamic) in this case.



Converting One Type-Based Abstract Domain to Another 151

Representation of States in a Determinized FTA. Let Q be the set of states of an
FTA. The textbook algorithm for determinization [6] constructs a DFTA whose
set of states is some subset of 2Q, say Q. Let {d1, . . . , dk} be a state in Q. The
set of terms accepted by {d1, . . . , dk} in the determinized DFTA is exactly those
terms that are accepted by all of d1, . . . , dk in the original FTA and by no other
state. This is summarised formally as follows.

Property 1. {d1, . . . , dk} ∈ Q iff (L(d1) ∩ . . . ∩ L(dk)) \
⋃
{L(d′) | d′ ∈ Q \

{d1, . . . , dk}} is nonempty.

Define dettypes(d,Q) = {d′ | d′ ∈ Q, d ∈ d′}. Let d ∈ Q, and let LQ(d) repre-
sent the terms accepted by d in the original FTA. Let {d1, . . . , dk} ∈ Q and let
LQ({d1, . . . , dk}) be the set of terms accepted by {d1, . . . , dk} in the correspond-
ing DFTA. Then we have LQ(d) = ∪{LQ(d′) | d′ ∈ dettypes(d,Q)}.

Intuitively, dettypes(d,Q) tells us the set of states in Q into which d is split
during determinization. Thus, the use of sets of states from the original FTA to
denote states in the DFTA gives us a convenient way of relating each state in
the original FTA with the “equivalent” set of states in the corresponding DFTA.

Example 3. Let Q = {list, dynamic} with transitions as defined in Example 2.
The determinization algorithm yields states Q = {{list, dynamic}, {dynamic}}
corresponding to list and nonlist respectively. Then dettypes(dynamic,Q) =
{{list, dynamic}, {dynamic}} and dettypes(list,Q) = {{list, dynamic}}. This
shows that the type list in the original FTA corresponds to {list, dynamic} in
the DFTA, while the type dynamic is split into two disjoint types {list, dynamic}
(lists) and {dynamic} (non-lists) in the DFTA.

Determinization of the Union of Two FTAs. Let 〈Q1, Σ, Δ1〉 and 〈Q2, Σ, Δ2〉
be FTAs based on the same signature and let 〈Q1∪Q2, Σ, Δ1∪Δ2〉 be the union
of the two automata. (Note, we can assume without loss of generality that Q1
and Q2 are disjoint.) Determinize all three automata; we will refer to the sets of
states of the respective DFTAs as Q1, Q2 and Q�.

3.1 Correspondence Between Pre-interpretations and DFTAs

A pre-interpretation J of a signature Σ is defined by a domain QJ and a mapping
IJ which maps each n-ary function symbol f/n ∈ Σ to a function Qn

J → QJ ,
denoted fJ .

It was shown in [3] that a complete DFTA is equivalent to a pre-interpretation
of Σ. Thus when we speak of a pre-interpretation we could equally well refer to
a completed DFTA and vice versa. Each rule f(d1, . . . , dn) → d in the DFTA
corresponds to an equation fJ(d1, . . . , dn) = d in the pre-interpretation J . The
set of rules with the same function f/n on the left defines the function fJ onto
which f/n is mapped by IJ . The DFTA is complete, hence the function fJ is
total.



152 J.P. Gallagher, G. Puebla, and E. Albert

Example 4. The DFTA in Example 2 can be written as the pre-interpretation J
with domain {list, nonlist} and functions []J , [.|.]J , aJ , sJ defined by:

{[]J = list, [list|list]J = list, [nonlist|list]J = list, [list|nonlist]J = nonlist,
[nonlist|nonlist]J = nonlist, aJ = nonlist,
sJ(list) = nonlist, sJ(nonlist) = nonlist}

3.2 Concrete and Abstract Domains of Interpretation

We take the concrete semantic domain of a logic program to be the set of its
Herbrand interpretations [7] over an extended signature containing constants
corresponding to variables, thus allowing information about term instantiation
to be captured [11]. Note that models based on this semantics cannot capture
certain properties directly, such as definite freeness. However the semantics pro-
vides a useful approximation of the computed answers. Let Σ be the signature of
the language of the program, consisting of a set of ranked function and predicate
symbols. Let AtomΣ be the set of atoms of form p(t1, . . . , tn) where p ∈ Σ is
an n-ary predicate symbol and t1, . . . , tn ∈ TermΣ . AtomΣ is often called the
Herbrand base of P . A Herbrand interpretation of P is a subset of AtomΣ , rep-
resenting the atoms interpreted as true. The lattice of Herbrand interpretations
D = 〈2AtomΣ ,⊆,∪,∩, ∅, AtomΣ〉 is called the concrete domain.

From a Pre-Interpretation to an Abstract Domain. Let J be a pre-interpretation
of Σ with domain QJ . The set AtomJ is the set of expressions p(d1, . . . , dn)
where p ∈ Σ is an n-ary predicate symbol and d1, . . . , dn ∈ QJ . The lattice
of interpretations over J , AJ = 〈2AtomJ ,⊆,∪,∩, ∅, AtomJ〉 is called the abstract
domain based on pre-interpretation J . A Galois connection between AJ and D
is given by the concretisation function γJ : 2AtomJ → 2AtomΣ .

γJ(S) =
⋃
{{p(t1, . . . , tn) | ti ∈ L(di), 1 ≤ i ≤ n} | p(d1, . . . , dn) ∈ S}.

The expression L(di) above refers to the subset of TermΣ accepted by di (con-
sidered as the state of a DFTA), as mentioned above.

Although we are not concerned with the semantic function in the present work,
we note that the least model MJ [P ] of a program P for a pre-interpretation J
can be obtained by a fixpoint computation. MJ [P ] is an abstraction of the least
Herbrand model M [P ], in the sense that γ(MJ [P ]) ⊇ M [P ]. So any FTA forms
the basis for an abstraction of a program in which the meaning of a predicate p
is abstracted by a set of domain atoms over the corresponding disjoint types.

Property 2. Let AJ be the abstract domain constructed from pre-interpretation
J . Then each element of the abstract domain represents a unique element of the
concrete domain; that is, for all S1, S2 ∈ 2AtomJ , S1 = S2 iff γJ (S1) = γJ(S2).
This holds because for all d1, d2 ∈ QJ , d1 = d2 iff L(d1) ∩ L(d2) �= ∅.

Constructing a Product Domain. Suppose J1 and J2 are DFTAs obtained from
FTAs 〈Q1, Σ, Δ1〉 and 〈Q2, Σ, Δ2〉 respectively.



Converting One Type-Based Abstract Domain to Another 153

Let A1 = 〈2AtomJ1 ,⊆,∪,∩, ∅, AtomJ1〉 and A2 = 〈2AtomJ2 ,⊆,∪,∩, ∅, AtomJ2〉
be the resulting abstract domains. We form a product domain A� = 〈2AtomJ� ,
⊆,∪,∩, ∅, AtomJ�〉 where J� is the DFTA of the union 〈Q1 ∪Q2, Σ, Δ1 ∪Δ2〉.

Claim. We claim that A� is the reduced cartesian product A1 �A2 [1].

This claim is informally justified as follows. The reduced product of A1 and A2
is defined as the result of applying a reduction operator ρ [1] to the cartesian
product of domains of A1 and A2 (with elements ordered componentwise). The
effect of ρ, informally speaking, is to “bring to the abstract the conjunction
of properties we would have in the concrete”. Let S1 and S2 be elements of
2AtomJ1 and 2AtomJ2 respectively. Then A� contains a unique element S� such
that γ1(S1) ∩ γ2(S2) = γ�(S�). Such an element S� exists since the intersection
of any two regular types in the original DFTAs is represented in the DFTA of the
union. Thus A� is at least as precise as the cartesian product of A1 and A2. S�

is unique (for each S1 and S2) due to Property 2. This implies that the reduction
operator [1] is the identity function when applied to the product domain.

Lemma 1. Let J1, J2 and J� be pre-interpretations constructed as above. Q1 is
the set of states in the FTA used to derive J1. Let S� ∈ 2AtomJ� . Then the element
S1 ∈ 2AtomJ1 defined as S1 = {p(d̄1∩Q1, . . . , d̄n∩Q1) | p(d̄1, . . . , d̄n) ∈ S�} is the
best approximation of S� in the domain 2AtomJ1 . That is, S1 = ∩{S′

1 | γ�(S�) ⊆
γ1(S′

1)}. (Similarly for 2AtomJ2 by symmetry.)

Proof. The notation d̄ means that d̄ is a state in a DFTA, i.e. it is a set of states
from the original FTA. First show that {p(d̄1∩Q1, . . . , d̄n∩Q1) | p(d̄1, . . . , d̄n) ∈
S�} ⊆ ∩{S′

1 | γ�(S�) ⊆ γ1(S′
1)}. Let p(ē1, . . . , ēn) ∈ {p(d̄1 ∩ Q1, . . . , d̄n ∩ Q1) |

p(d̄1, . . . , d̄n) ∈ S�}. Then there exists p(d̄1, . . . , d̄n) ∈ S�} such that for 1 ≤ i ≤
n, d̄i = ēi ∪ f̄ where f̄ ∩Q1 = ∅. Then γ�(S�) contains an element p(t1, . . . , tn)
such that for 1 ≤ i ≤ n, ti ∈ L(ēi ∪ f̄), where f̄ ∩ Q1 = ∅. For any element
S′

1 ∈ 2AtomJ1 , if p(t1, . . . , tn) ∈ γ1(S′
1) then p(ē1, . . . , ēn) ∈ S′

1 since each ti ∈ L(ē)
for exactly one ē ⊆ Q1, and that ē must be ēi. Hence p(ē1, . . . , ēn) ∈ ∩{S′

1 |
γ�(S�) ⊆ γ1(S′

1)}.
Now show that ∩{S′

1 | γ�(S�) ⊆ γ1(S′
1)} ⊆ {p(d̄1 ∩ Q1, . . . , d̄n ∩ Q1) |

p(d̄1, . . . , d̄n) ∈ S�}. Let p(ē1, . . . , ēn) ∈ ∩{S′
1 | γ�(S�) ⊆ γ1(S′

1)}. If for all
S′

1 ∈ 2AtomJ1 such that γ�(S�) ⊆ γ1(S′
1), p(ē1, . . . , ēn) ∈ S′

1, then S� contains at
least one element p(d̄1, . . . , d̄n) such that for 1 ≤ i ≤ n, d̄i = ēi∪f̄ and f̄∩Q1 = ∅.
This is because γ1(ēi)∩γ�(d̄) = ∅ for all d̄ not of the form d̄ = ē∪f̄ and f̄∩Q1 = ∅.
Hence p(ē1, . . . , ēn) ∈ {p(d̄1 ∩Q1, . . . , d̄n ∩Q1) | p(d̄1, . . . , d̄n) ∈ S�}.

Property 3. A product domain A1 � A2 can precisely represent elements of its
factors A1 and A2. That is, if S1 is an element of the domain of A1 then there
exists an element S� in the domain of A� such that γ1(S1) = γ�(S�). The
element is unique by Property 2. Furthermore, S1 = {p(d̄1 ∩Q1, . . . , d̄n ∩Q1) |
p(d̄1, . . . , d̄n) ∈ S�} by Lemma 1.



154 J.P. Gallagher, G. Puebla, and E. Albert

Example 5. Let 〈Q1, Σ, Δ1〉 and 〈Q2, Σ, Δ2〉 be FTAs, where Q1 = {g,nong}
and Q2 = {list, dynamic, int}, where these elements have their expected mean-
ings. The DFTA states Q1 obtained from Q1 are {{g}, {nong}} and the DFTA
states Q2 obtained from Q2 are {{dynamic, list}, {dynamic, int}, {dynamic}}.
The states Q� of the DFTA obtained from the union 〈Q1 ∪Q2, Σ, Δ1 ∪Δ2〉 are

{{dynamic, list, g}, {dynamic, list,nong},
{dynamic, int, g}, {dynamic, g}, {dynamic,nong}}.

(Note that there are fewer states in Q� than in the cartesian product of Q1 and
Q2.) Consider S1 = {p({g}, {g}} ∈ 2AtomJ1 . Then the element S� ∈ 2AtomJ� such
that γ1(S1) = γ�(S�) is

{p({dynamic, list, g}, {dynamic, g}), p({dynamic, list, g}, {dynamic, int, g}),
p({dynamic, list, g}, {dynamic, list, g}), p({dynamic, int, g}, {dynamic, g}),
p({dynamic, int, g}, {dynamic, list, g}), p({dynamic, g}, {dynamic, list, g}),
p({dynamic, int, g}, {dynamic, int, g}), p({dynamic, g}, {dynamic, int, g}),
p({dynamic, g}, {dynamic, g})}.

It contains every possible combination of arguments from the product DFTA
states that intersect with {g}.

In this case, any non-empty subset S′
� of S� also satisfies S1 = {p(d̄1 ∩

Q1, . . . , d̄n ∩Q1) | p(d̄1, . . . , d̄n) ∈ S′
�}.

3.3 Transformation from One Type Domain to Another

Now we can summarise the general method for representing an element of a
domain based on regular types in another domain based on different types.

Proposition 1. Suppose J1 and J2 are two DFTAs (i.e. pre-interpretations) ob-
tained from FTAs 〈Q1, Σ, Δ1〉 and 〈Q2, Σ, Δ2〉 respectively. Let J� be the DFTA
of the union 〈Q1 ∪Q2, Σ, Δ1 ∪Δ2〉.

Given S1 ∈ 2AtomJ1 , let S� ∈ 2AtomJ� satisfy γ1(S1) = γ�(S�). Property 3
shows that this exists (though we did not yet show an explicit procedure for
computing it). Then let S2 = {p(d̄1 ∩ Q2, . . . , d̄n ∩ Q2) | p(d̄1, . . . , d̄n) ∈ S�}.
Then S2 = α2(γ1(S1)), that is, S2 is the best representative of S1 in 2AtomJ2 .

Proof. S2 = ∩{S′
1 | γ�(S�) ⊆ γ2(S′

1)} by Lemma 1. But since we know that
γ1(S1) = γ�(S�) we can write S2 = ∩{S′

1 | γ1(S1) ⊆ γ2(S′
1)}. This is equivalent

to S2 = α2(γ1(S1)) (see Section 2).

4 Construction of a Standard Abstract Domain from the
CiaoPP Assertion Language

As already mentioned, a set of assertions in the CiaoPP assertion language about
success of a predicate p/n can be interpreted as a set of abstract atoms of form



Converting One Type-Based Abstract Domain to Another 155

p(d1, . . . , dn) where d1, . . . , dn are the names of regular types defined within the
CiaoPP system. Such a description is called an abstract success set. Note that
the CiaoPP system itself does not present all such values di as regular types.
There are modes and primitive types as well; however, as shown below, in the
context of a particular program and signature we are able to interpret all of
these concepts as regular types defined by a finite set of rules. A discussion of
the use of regular types to represent modes is contained in previous work [3, 8].

Having expressed all the abstract values di as regular types, we will apply the
determinization algorithm on the regular types to obtain an abstract domain, as
summarised in Section 3. This will be called the standard domain for a program.

Example 6. The abstract success sets for some built-in predicates, as contained
in the standard assertion database of CiaoPP, is shown in the following table.

atom concat/2 {atom concat(atm, atm, atm)}
write/2 {write(stream, term)}
length/2 {length(list, int)}
is/2 {is(num, arithexpression)}

Here, atm, int and num are primitive types; stream, list and arithexpr are
defined by means of regular type rules, and term denotes the set of all terms.
The rules defining stream, for example, are as follows:

user input→ stream user output → stream
user error → stream user → stream
′$stream ′(int, int)→ stream

We will now show how all such descriptions, including primitive types and those
such as term can be defined as regular types, in the context of a given program.

4.1 Construction of the Standard FTA

Given a program P , we construct the standard abstract domain. It is based
on a finite tree automaton 〈Qstd, Σstd, Δstd〉. We now show how each of these
components is made up.

The standard types Qstd. The states Qstd consist of the following components:
(1) a set of defined system types Qs, defined by rule Δs; (2) a set of primitive
types Qprim; (3) a set of contextual types Qcntxt.

The defined system types Qs comprise types that are defined by regular type
rules in the CiaoPP assertion language. Example include arithexpr and list
as shown in Example 6, which are used in many predicates, and also keylist,
lock mode, io mode, stream and stream alias which concern only one or two
library predicates. The primitive types Qprim include num, int, flt, nnegint and
atm which implicitly are defined as infinite (or very large) sets of constants, but
are in practice defined by means of a characteristic predicate that is true or false
for each constant. The descriptors gnd, nonvar, var, term and struct are called



156 J.P. Gallagher, G. Puebla, and E. Albert

contextual types since their definition depends on the particular signature. In
CiaoPP these are also handled by means of a characteristic predicate, but unlike
primitive types they may be true for non-constants. We define the set of standard
types Qstd = Qs ∪Qprim ∪Qcntxt.

The global signature of a program Σstd. We now construct Σstd, the global
signature, which consists of the following components: (1) the program signature
ΣP ; (2) the system signature Σs; (3) the primitive signature Σprim. Note that,
unlike Qstd, the global signature is dependent on the program to be analysed as
well as the standard system functions and constants.

Given a program P to be analysed let ΣP be the set of function symbols
occurring in P and let Σs be the set of function symbols occurring in Δs, the
rules defining Qs. The primitive signature Σprim is a set of constant symbols that
contains sufficient constants to distinguish each of the primitive types Qprim.
More precisely, for each non-empty subset D = {d1, . . . , dk} of Qprim, let ΣD be
the set of constants that are of type di for all di ∈ D, and are not of any other
type. Then Σprim contains at least one constant from each non-empty set ΣD.
We also insist that Σprim is disjoint from ΣP ∪ Σs. A typical set of constants
in Σprim is {0, 1, 1.0,−1, ′$CONST ′}. Thus for instance, we know that the set
nnegint ⊂ int; therefore Σprim should contain at least one constant that is
in both int and nnegint (e.g. 1) and one which is in int but not in nnegint
(e.g. −1). However, note that if P happens to contain the constants 1 or −1 we
must pick another member of int ∩ nnegint instead of 1 or another member of
int \ nnegint to replace −1.

We define the global signature Σstd = ΣP ∪ Σs ∪ Σprim ∪ {′$VAR′} where
′$VAR′ is a constant that does not appear in any other component of Σstd. We
will discuss the role of ′$VAR′ when constructing the contextual type rules.

The global type rules Δstd. The set of type rules defining the types Qstd over the
signature Σstd consists of the following components: (1) the system type rules
Δs; (2) the primitive rules Δprim; (3) the contextual type rules Δcntxt.

The system type rules Δs are simply extracted from the CiaoPP system.
For the primitive rules we assume that the Prolog system provides some built-in
predicate for testing whether a given constant is of a given primitive type. Hence
given the signature Σstd we can enumerate the set of rules Δprim of the form
c → d where c ∈ Σstd \ {′$VAR′} is a constant, d ∈ Qprim and c is of type d.

The types in Qcntxt are those whose definitions depend on the signature, such
as gnd. Given the global signature Σstd, then Δcntxt is a set of rules defining
each type in Qcntxt in terms of Σstd. The details of the rules for gnd, nonvar,
var, term and struct are as follows.

– f(gnd, . . . , gnd)→ gnd, for each n-ary function f ∈ Σstd \ {′$VAR′};
– f(term, . . . , term)→ nonvar, for each n-ary function f ∈ Σstd \ {′$VAR′};
– f(term, . . . , term)→ term, for each n-ary function f ∈ Σstd;
– f(term, . . . , term) → struct, for each n-ary function (n > 0) f ∈ Σstd \
{′$VAR′};

– the single rule ′$VAR′ → var.



Converting One Type-Based Abstract Domain to Another 157

Note the role of ′$VAR′; it is a constant that appears in the type term and var
but no other type. The idea is to distinguish the general type term from other
types (such as gnd), by including a constant ′$VAR′ that no other type contains,
apart from var, which only contains ′$VAR′. Thus a predicate argument that is
specified as term can contain any term (since L(term) ⊃ L(d) for all d) including
terms that are of no other type. This technique has been used to model the
presence of variables in previous work applying pre-interpretations for program
analysis [9–11].

Determinization of the Standard FTA. Having constructed the finite tree au-
tomaton 〈Qstd, Σstd, Δstd〉 we can build a pre-interpretation and hence an ab-
stract domain, called the standard domain, as described in Section 3. In the
DFTA obtained by determinizing 〈Qstd, Σstd, Δstd〉 the states are elements of
2Qstd . In the worst case, the set of states would be 2|Qstd|−1, but it turns out to
be much less. The number of DFTA states is in fact 37, almost the same as the
size of Qstd. We can produce a compact representation for Δstd. The number of
transitions in the DFTA, if represented explicitly, would be very large (24,239)
but we use a compact representation as discussed in [12]. The determinization
procedure takes approximately 0.6 seconds. In fact the conversion procedure
does not use the DFTA rules, but relies only on the set of states of the DFTA,
thanks to the use of the representation of states as elements of 2Qstd .

Representation of Abstract Success Sets in the Standard Domain. An abstract
success set obtained from the CiaoPP assertion database, such as those shown in
Example 6, can be represented as an element of the standard domain. Let Mp

be the abstract success set of some predicate p. Let Qstd be the set of states in
the standard DFTA. Then the representation of Mp in the standard domain is

Mp
std = {p(d′1, . . . , d′n) | p(d1, . . . , dn) ∈Mp

∧ ∀i : 1 ≤ i ≤ n : d′i ∈ dettypes(di,Qstd)}.

Mp
std is an exact representation of Mp as formalised by the following property.

Property 4. Let γ be the concretisation function in the standard domain. Then
γ(Mp

std) = {p(t1, . . . , tn) | p(d1, . . . , dn) ∈ Mp, ti ∈ L(di), 0 ≤ i ≤ n}. Here L(di)
refers to the set of terms accepted by di in the standard FTA. The property
follows from the definition of dettypes.

5 The User Domain and the Construction of the Product
Domain

Now we turn to the question of converting the descriptions of predicates given
with respect to the states of the standard FTA into descriptions in terms of
some other, user-supplied FTA. Let 〈Qu, Σu, Δu〉 be an FTA given by the user.
We assume that Σu ⊆ Σstd. (This is no loss of generality since the program P can



158 J.P. Gallagher, G. Puebla, and E. Albert

always to modified to contain more function symbols without affecting its in-
tended behaviour, e.g. by adding a dummy clause containing the required func-
tion symbols.) Therefore we consider the FTA with the full signature 〈Qu, Σstd,
Δ′

u〉. Qu also contains the contextually defined type dynamic and possibly other
contextual types; Δ′

u is obtained from Δu by extending the definitions of those
contextual types for the full signature Σstd. We also assume that if a type appears
both in Qu and Qstd then it has the same meaning in both.

The intention is to analyse the given program P with respect to the pre-
interpretation obtained by determinizing the user-supplied FTA. The user do-
main for analysis is based on the DFTA obtained from 〈Qu, Σstd, Δ

′
u〉 as

described in Section 3.
We construct an FTA combining the standard FTA with the user-supplied

FTA 〈Qu, Σstd, Δ
′
u〉. The union FTA 〈Qstd∪Qu, Σstd, Δ

′
u∪Δstd〉 is determinized,

and the product abstract domain is the abstract domain obtained from the re-
sulting DFTA.

5.1 Converting Abstract Success Sets to the User Domain

As already discussed, we are supplied with an abstract success set of each of
the external predicates p/n in P , as a set of atoms of form p(d1, . . . , dn) where
d1, . . . , dn ∈ Qstd. (We can safely assume a default abstraction where all argu-
ments are of type term, if no abstraction is defined).

Representing an abstract success set in the product domain. Let p/n be a pred-
icate and let its abstraction over Qstd be Mp. Let Q be the set of states in
the product DFTA that is obtained from the standard FTA and some user FTA.
Then the corresponding abstract success set, defined over the set of determinized
types Q�, is defined as

Mp
� = {p(d′1, . . . , d′n) | p(d1, . . . , dn) ∈ Mp

∧ ∀i : 1 ≤ i ≤ n : d′i ∈ dettypes(di,Q�)}.

Property 5. Let γ be the concretisation function in the product domain. Then
γ(Mp

� ) = {p(t1, . . . , tn) | p(d1, . . . , dn) ∈ Mp, ti ∈ L(di), 0 ≤ i ≤ n}. Here L(di)
refers to the set of terms accepted by di in the standard FTA. As for Property
4 this shows that an abstract model has an exact representation in the product
domain.

Example 7. Let the given abstract success set of length/2 be {length(list, int)}.
Let the user FTA be the following definitions of the types matrix and row along
with the rules f(dynamic, . . . , dynamic)→ dynamic for each f/n ∈ Σstd.

[]→ row []→ matrix
[dynamic|row] → row [row|matrix] → matrix

Then the abstract success set in the product domain includes 32 abstract atoms.
An example of an atom in the set is



Converting One Type-Based Abstract Domain to Another 159

length( {callable, list, struct, term, dynamic, row, sourcename, struct, term},
{arithexpression, callable, character code, constant, gnd, int, nnegint,
num, struct, term, dynamic, sourcename, atom or number})

The first argument represents one of the disjoint types that make up the type
list in the product DFTA, and similarly the second argument is a part of the
int type.

Projecting a model onto user types. The final stage is to project the model
from the product domain onto the user domain. Let p ∈ EP be an external
predicate and let Mp

� be the model of p over the determinized types T ′. Then the
projection of Mp

� onto the user types Qu is defined as Mp
u = {p(d′1∩Qu, . . . , d′n∩

Qu) | p(d′1, . . . , d
′
n) ∈ Mp

� }, Note that we can ensure that each argument d′1∩Qu

is non-empty by including dynamic in Qu.

Example 8. Let M length
� be the model of length in the product domain as in

the previous example. Let Qu = {matrix, row, dynamic}. Then the projection
of M length

� onto Qu is

{length({row, dynamic}, {dynamic}),
length({matrix, row, dynamic}, {dynamic})}

The projected model is not expressed directly in the set of user types Qu

but rather in the disjoint types resulting from determinizing Qu. The model
expressed in this form is exactly what is required for computing a model of the
program P over the user types, using the approach in [3].

The projected models are safe approximations of the models over the standard
types, and are the best available approximations in the user domain.

Proposition 2. Let P be a program and let p be an externally defined pred-
icate occurring in P . Let Mp be an abstraction of the success set of p over
the standard types Qstd and let Mp

std be the exact representation of Mp in
the standard domain. Let Mp

u be the projection onto the user types Qu. Then
Mp

u = αu(γstd(M
p
std)), which is the best available safe approximation of Mp

std in
the user domain.

Proof. This is a direct consequence of Proposition 1 and Property 5.

6 Implementation and Experiments

We have implemented the procedure in Ciao-Prolog and used it to compute
built-in tables for a range of built-ins over simple domains, such as the Pos
domain and the default domain used with the binding time analysis tool for the
Logen system [8].

Note that the results obtained are not always the best possible for a given do-
main. This is due to two main causes. Firstly, the assertion database of CiaoPP is
not yet complete. Secondly, even where values have been entered they do not al-
ways capture dependencies between arguments. For example, for the list append



160 J.P. Gallagher, G. Puebla, and E. Albert

Table 1. Standard Abstract Models

Predicate Standard model

is/2 is(num,arithexpression)

number/1 number(num)

member/2 member(term,struct)

length/2 length(list,int),

=../2 =..(term,list)

write/1 write(stream,term)

atom concat/3 atom concat(atm,atm,atm)

predicate app/3 the given abstraction might be {app(list, list, list)}. Since a list
can be either ground or non-ground, we cannot derive an accurate description of
app over the Pos domain from the given information. The optimal result would
be {app(g, g, g), app(g,nong ,nong), app(nong , g,nong), app(nong,nong ,nong)},
but our procedure will return the most general model having all eight possible
combinations of g, nong arguments.

We show in Table 1 the abstract models of certain predicates extracted from
the CiaoPP database. Table 2 shows the derived models over the FTA defin-
ing the types dynamic and static (which denote the same as gnd and term
in the standard models, but are the names used in the binding time analysis
of Logen). The DFTA has two states {{dynamic, static}, {dynamic}} denot-
ing ground and non-ground terms respectively. An underscore stands for either
state. This domain is equivalent to Pos [13] but the models derived in Table
2 are not the best possible within the domain, though they are optimal with
respect to the given standard models. Table 3 shows the derived models over the
FTA defining the types dynamic and var. The corresponding DFTA contains
states {{dynamic, var}, {dynamic}} denoting variable and non-variable terms
respectively.

Regarding performance and scalability, we remark that so far we handle the
full set of types from the CiaoPP database without problems, using a Prolog
implementation. The conversion is performed off-line, not during analysis, so

Table 2. Models over {dynamic,static} (ground) and {dynamic} (non-ground)

Predicate Abstract model for types {dynamic, static}
is/2 is({dynamic,static},{dynamic,static})

number/1 number({dynamic,static})
member/2 member( , )

length/2 length({dynamic},{dynamic,static})
length({dynamic,static},{dynamic,static})

=../2 =..( , )

write/1 write({dynamic,static},{dynamic})
write({dynamic,static},{dynamic,static})

atom concat/3 atom concat({dynamic,static},{dynamic,static},{dynamic,static})



Converting One Type-Based Abstract Domain to Another 161

Table 3. Models over {dynamic,var} (var) and {dynamic} (non-var)

Predicate Abstract model for types {dynamic, var}
is/2 is({dynamic},{dynamic})

number/1 number({dynamic})
member/2 member( ,{dynamic}),
length/2 length({dynamic},{dynamic})

=../2 =..( ,{dynamic})
write/1 write({dynamic},{dynamic,var})

write({dynamic},{dynamic})
atom concat/3 atom concat({dynamic},{dynamic},{dynamic})

absolute time is not critical. However, so far the target user domains have been
small. The efficient determinization algorithm described in [12] performs well
and we do not anticipate problems moving to larger domains. Scalability issues
do arise in representing the models themselves, in domains based on DFTAs with
a large number of states. Compact representations of relations using techniques
such as BDDs [14, 15] seem to be promising approaches to this problem, and we
have already made use of BDDs in handling DFTAs [12].

7 Conclusions and Future Work

We have described a method for translating abstract descriptions of success sets
of predicates from a general purpose assertion language, the CiaoPP assertion
language, into any regular type-based abstract domain. Current work is directed
towards automatic translation of the assertions for all standard library predicates
into commonly used domains. Effort also needs to be put into completing and
making more precise the existing assertions on predicates. We have described
the method applied to success set descriptions, but the method applies to call
patterns, or backwards analyses, provided that the abstract domain is based on
regular types.

We believe that this work also underlines the generality and versatility of
regular types for constructing analysis domains. The fact that special purpose,
program specific domains can be constructed easily makes it all the more relevant
to be able to render information about imported code in such domains, as this
work does. Future work will continue to explore the potential of regular type
domains and combine them with other domains such as numeric domains.

Acknowledgements. We thank Patrick Cousot for some enlightening remarks,
and the LOPSTR referees for useful comments on the extended abstract. This
work was funded in part by the Information Society Technologies programme of
the European Commission, Future and Emerging Technologies under the FP5
IST-2001-38059 ASAP and FP6 IST-15905 MOBIUS projects and by the Spanish
Ministry of Science and Education under the TIC 2002-0055 CUBICO project.
J. Gallagher’s research is supported in part by the IT-University of Copenhagen.



162 J.P. Gallagher, G. Puebla, and E. Albert

References

1. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Antonio,Texas, ACM Press, New York, U.S.A. (1979) 269–282

2. Hermenegildo, M.V., Puebla, G., Bueno, F., López-Garćıa, P.: Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming 58(1–2) (2005)

3. Gallagher, J.P., Henriksen, K.S.: Abstract domains based on regular types. In
Lifschitz, V., Demoen, B., eds.: Proceedings of the International Conference on
Logic Programming (ICLP’2004). LNCS 3132. (2004) 27–42

4. Filè, G., Giacobazzi, R., Ranzato, F.: A unifying view on abstract domain design.
ACM Computing Surveys 28(2) (1996) 333–336

5. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ analyzer. In Sagiv, S., ed.: ESOP. LNCS 3444. (2005) 21–30

6. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree Automata Techniques and Applications. http://www.grappa.univ-
lille3.fr/tata (1999)

7. Lloyd, J.: Foundations of Logic Programming: 2nd Edition. Springer-Verlag (1987)
8. Craig, S., Gallagher, J.P., Leuschel, M., Henriksen, K.S.: Fully automatic binding

time analysis for Prolog. In Etalle, S., ed.: Pre-Proceedings, 14th International
Workshop on Logic-Based Program Synthesis and Transformation, LOPSTR 2004,
Verona, August 2004. (2004) 61–70

9. Boulanger, D., Bruynooghe, M., Denecker, M.: Abstracting s-semantics using a
model-theoretic approach. In Hermenegildo, M., Penjam, J., eds.: Proc. 6th Inter-
national Symposium on Programming Language Implementation and Logic Pro-
gramming, PLILP’94. LNCS 844 (1994) 432–446

10. Boulanger, D., Bruynooghe, M.: A systematic construction of abstract domains. In
Le Charlier, B., ed.: Proc. First International Static Analysis Symposium, SAS’94.
LNCS 864 (1994) 61–77

11. Gallagher, J.P., Boulanger, D., Sağlam, H.: Practical model-based static analy-
sis for definite logic programs. In Lloyd, J.W., ed.: Proc. of International Logic
Programming Symposium, MIT Press (1995) 351–365

12. Gallagher, J.P., Henriksen, K.S., Banda, G.: Techniques for scaling up analyses
based on pre-interpretations. In Gabbrielli, M., Gupta, G., eds.: Proceedings of
the 21st International Conference on Logic Programming, ICLP’2005. LNCS 3668
(2005). 280–296

13. Marriott, K., Søndergaard, H.: Precise and efficient groundness analysis for logic
programs. LOPLAS 2(1-4) (1993) 181–196

14. Iwaihara, M., Inoue, Y.: Bottom-up evaluation of logic programs using binary
decision diagrams. In Yu, P.S., Chen, A.L.P., eds.: ICDE, IEEE Computer Society
(1995) 467–474

15. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In Pugh, W., Chambers, C., eds.: PLDI, ACM (2004)
131–144



Experiments in Context-Sensitive Analysis
of Modular Programs

Jesús Correas1, Germán Puebla2,
Manuel V. Hermenegildo2,3, and Francisco Bueno2

1 School of Computer Science,
Complutense University of Madrid (UCM)

2 School of Computer Science,
Technical University of Madrid (UPM)

3 Depts. of Computer Science and Electrical and Computer Engineering,
University of New Mexico (UNM)

jcorreas@fdi.ucm.es
{german, herme, bueno}@fi.upm.es

Abstract. Several models for context-sensitive analysis of modular pro-
grams have been proposed, each with different characteristics and rep-
resenting different trade-offs. The advantage of these context-sensitive
analyses is that they provide information which is potentially more ac-
curate than that provided by context-free analyses. Such information can
then be applied to validating/debugging the program and/or to specializ-
ing the program in order to obtain important performance improvements.
Some very preliminary experimental results have also been reported for
some of these models, providing some initial evidence on their potential.
However, further experimentation, needed in order to understand the
many issues left open and to show that the proposed modes scale and
are usable in the context of large, real-life modular programs, was left as
future work. The aim of this paper is twofold. On one hand we provide an
empirical comparison of the different models proposed in previous work,
as well as experimental data on the different choices left open in those
designs. On the other hand we explore the scalability of these models
by using larger modular programs as benchmarks. The results have been
obtained from a realistic implementation of the models, integrated in
a production-quality compiler (CiaoPP/Ciao). Our experimental results
shed light on the practical implications of the different design choices and
of the models themselves. We also show that context-sensitive analysis of
modular programs is indeed feasible in practice, and that in certain criti-
cal cases it provides better performance results than those achievable by
analyzing the whole program at once. This is specially the case regarding
memory consumption and when reanalyzing after making changes to a
program, as is often the case during program development.

1 Introduction and Motivation

Global analysis of logic programs has received considerable theoretical and prac-
tical attention, and as a result it is now possible to infer a wide range of program

P.M. Hill (Ed.): LOPSTR 2005, LNCS 3901, pp. 163–178, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



164 J. Correas et al.

properties with a considerable degree of accuracy and for a significant number
of programs. Also, tools have been developed which in addition to inferring
these properties, allow debugging, validating, and specializing programs, achiev-
ing important improvements in both correctness and efficiency. However, most of
these techniques were originally designed to be applied to a complete, monolithic
program. In contrast, real programs invariably have a more complex structure
combining a number of user modules with other modules from system libraries.
This is one of the reasons why most global analysis tools are still prototypes
and, though numerous experiments demonstrate their effectiveness, they have
not yet made their way into existing real-life programming systems.

Performing global analysis on modular programs differs from doing so in a
monolithic setting in several interesting ways and poses non-trivial problems
which must be solved (see, for example, [6] and its references where the main
approaches to separate modular static analysis by abstract interpretation are
described). Regarding the analysis of modular logic programs, a preliminary
study of the extension of context-sensitive analysis and specialization to the
case of modular logic programs was presented in [14]. A full practical proposal
for context-sensitive analysis of modular logic programs was presented in [4].
In fact, in [4] a collection of models was proposed, each of them with different
characteristics and representing different trade-offs. Some very preliminary ex-
perimental data was also reported for an implementation of some of these models
in the context of the Ciao system. Also, another implementation of [4] in the
context of the HAL system [8] was reported in [11]. These early experimental
results provided initial evidence on the overall potential of the approach, but
were limited in that they studied only a partial implementation. It was left as
future work to perform further experimentation in order to understand the many
issues and trade-offs left open in the design, and to study whether the proposed
models scale and are usable in the context of large, real-life modular programs.

The aim of this paper is twofold. On one hand we provide an empirical com-
parison of the different models proposed in [4], as well as experimental data on
the different choices left open in those designs. To this end we have completed
a full implementation in CiaoPP [9] (the preprocessor of the Ciao system [2]) of
the framework for context-sensitive analysis described in [13] and its different
instances, and we have studied experimentally the behavior of the resulting sys-
tem. These results have been compared with traditional, non modular analyses
in terms of time and memory consumption.

Our second aim is to explore the scalability of these models and of the imple-
mentation. To this end we have used some larger modular programs as bench-
marks, including some real-life examples such as a working partial evaluator and
parts of the Ciao compiler.

In the following section we present an overview of the general problems in an-
alyzing large modular programs, and the solutions proposed in previous work, in-
cluding the major design trade-offs. Section 3 then describes the tests performed
and analyzes the results obtained. Finally, Section 4 presents our conclusions.



Experiments in Context-Sensitive Analysis of Modular Programs 165

2 Analysis of Modular Programs

As mentioned in the previous section, the framework used herein is based on
[13, 14], where a detailed description of the issues related to the analysis of
modular programs and the different approaches to it can be found. The following
subsections present an overall summary of [13], with special emphasis on the
issues that are most relevant to our experimental study.

2.1 Modular Programs

A program is said to be modular when its source code is distributed in several
source units named modules, and they contain language constructions to clearly
define the interface of every module with the rest of the modules in the program.
This interface is composed of two sets of predicates: the set of exported predi-
cates (those accessible from other modules), and the set of imported predicates.
For concreteness, and because of its appropriateness for global analysis, in our
implementation we will use the module system of [5]. This module system is
strict in the sense that procedures external to a module are visible to it only if
they are part of its interface. A predicate defined in a given module can be called
from another module only if it appears in the exported list of its module and in
the imported list of the caller module, i.e., procedures which are not exported
are not visible outside the module in which they are defined.

We note the distinction between global tasks and local tasks. In global tasks
the results of processing a part of the program (say, a procedure or a module)
may be needed in order to process other parts of the program. In contrast, a local
task processes only one procedure or module at a time and, most importantly, all
the information required for performing the task can be obtained by inspecting
that procedure or module. The fundamental issue is that global processing often
requires iterating on the whole program until a fixed point is reached.

Context-sensitive program analysis is an example of a global task: in a modular
setting, it may well be the case that part of the information needed to perform
the analysis on (a procedure in) module m has to be computed in modules other
than m. We will refer to the information originated in modules different from
m as inter-modular information in contrast to the information originated in m
itself, which we will call intra-modular.

2.2 Flattening a Program Unit vs. Modular Processing

Applying a framework for non-modular programs to a module m which belongs
to a modular program has the difficulty that m may not be self-contained. How-
ever, there should be no problem in applying the framework if m is a leaf module.
Furthermore, given a global process such as program analysis it is not obvious
that it makes sense to apply the process to a module m alone. In fact, it could
make more sense, at least in principle, to apply analysis to the complete program
instead, which would be then self-contained.

Given a modular program P it is always possible to build a single module
mflat which is equivalent to P and which is a leaf. The process of constructing



166 J. Correas et al.

such a module mflat usually only amounts to renaming apart identifiers in the
different modules in P so as to avoid name clashes. We will use flatten(P ) =
mflat to denote that the module mflat is the result of renaming apart the code
in each module in P and concatenating its code into a monolithic module mflat.
This points to a simple solution to the problem of processing modular programs
(at least for the case in which all the code is available): to transform P into the
equivalent monolithic program mflat. It is then straightforward to apply any tool
for non-modular programs to the leaf module mflat. In the rest of this work, we
will refer to this approach as the flattened or monolithic approach.

Assuming the existence of an implementation for non-modular analysis, this
approach to analyzing modular programs is often simple to apply. Also, the
flattening approach has theoretical interest: in our case it will be used as a base
case in order to compare to it the efficiency of the different approaches to modular
handling of programs that will be studied. However, as a practical way of actually
performing analysis of large programs the flattening approach also has important
potential drawbacks. The most obvious one is that the complete program must
be loaded into the analyzer, and thus large programs may make the analyzer
run out of memory. Moreover, as the internal analysis data structures include
information for all the program source code, in the monolithic case analysis
of a given procedure may take more time than when keeping in memory only
the module in which such procedure resides. Another, perhaps more important
drawback is that the program must be self-contained: this can be a problem if
the analyzer is used while developing the program, when some modules are not
yet implemented, or if there are calls to external procedures, i.e., procedures
for which the source code is not available, or which are implemented in other
languages.1

2.3 Analyzing One Module at a Time

The approach taken in [13] and implemented in CiaoPP is based on the separate
analysis of the modules in a modular program. The analyzer is invoked (possibly
several times) for each module in the program, in order to obtain the analysis
results needed by the analysis of other program modules. We denote the process
of obtaining the answer value AP of any predicate P for a call CP as: P : CP �→
AP. The analysis results obtained for the exported predicates of every module
are stored in a Global Answer Table (GAT ).

Analyzing a module separately presents the difficulty that, from the point of
view of analysis, the code to be analyzed is incomplete in the sense that the code
for procedures imported from other modules is not available to analysis. More
precisely, during the analysis of a module m there may be calls P : CP such that
the procedure P is not defined in m but instead it is imported from another mod-
ule m′. We refer to determining the answer value of P , AP (P : CP �→ AP) as
the imported success problem. In addition, in order to obtain analysis information

1 However, several approaches have been proposed for the analysis of incomplete pro-
grams (open programs), for example [1, 3].



Experiments in Context-Sensitive Analysis of Modular Programs 167

for m′ which is as accurate as possible we need to somehow propagate the call
P : CP from m to m′ so that the next time m′ is analyzed such a call pattern is
taken into account. We refer to this as the imported calls problem.

Solving the Imported Success Problem. The imported success problem is
solved by means of a success policy, or SP for short. The behavior of the analyzer
for predicates defined in m remains exactly as before. SP is needed because given
a call pattern P : CP it will often be the case that no entry of exactly the form
P : CP �→ AP exists in the analysis results stored in the GAT for m′. In such case,
the information already present may be of value in order to obtain a (temporary)
answer pattern AP, and continue the analysis of module m.

In contrast, in many formalizations of non-modular analysis there is no explicit
success policy. This is because if the call pattern P : CP has not been analyzed
yet, the analysis algorithm forces its computation. Thus, the results of analysis
do not depend on any particular success policy: when the analyzer reaches a
fixed-point there is always an entry of the form P : CP �→ AP for any call
pattern P : CP which appears in the analysis graph. However, in a modular
setting it is often convenient to delay the analysis of predicates defined in other
modules until those modules are revisited. In general, those modules may have
already been analyzed or they may be analyzed in the future. We will simply do
the best possible given the information available in the GAT.

Several success policies can be defined which provide over- or under-approxi-
mations of the exact answer pattern AP= with different degree of accuracy. Note
that this exact value AP= is the one which the flattening approach (that we will
thus denote SP=) would compute. In this work we consider two kinds of success
policies, those which are guaranteed to always provide over-approximations, i.e.
AP= ' SP(P : CP, GAT ), and those which provide under-approximations, i.e.,
SP(P : CP, GAT ) ' AP=. We will use the superscript + (resp. −) to indicate
that a success policy over-approximates (resp. under-approximates).

In the experiments shown in this work, a quite precise over-approximating
success policy has been used, already proposed in [14] and defined as:

SP+
All(P : CP, GAT ) = topmost(CP) �AP′∈app

AP′ where

app = {AP′ | (P : CP′ �→ AP′) ∈ GAT and CP ' CP′}

The function topmost obtains the topmost answer pattern for a call pattern. The
notion of topmost description was already introduced in [3]. Informally, a topmost
description preserves the information on properties which are downwards closed
whereas it loses information for those which are not. Note that taking ) as
answer pattern is also a correct over-approximation, but often less accurate than
using topmost substitutions. For example, if a variable is known to be ground in
the call pattern, it will continue being ground in the answer pattern and taking
) as the answer pattern would lose this information. However, the fact that
a variable is free on call does not guarantee that it will keep on being free on
success.



168 J. Correas et al.

We refer to this success policy as SP+
all because it uses all entries in GAT

which are applicable to the call pattern in the sense that the call pattern already
computed is more general than the call being analyzed.

The counter-part of SP+
all is the function SP−

all which is defined as:

SP−
All(P : CP, GAT ) = �AP′∈app

AP′ where
app = {AP′ | (P : CP′ �→ AP′) ∈ GAT and CP′ ' CP}

Note the change in the direction of the applicability relation (the call pattern in
the GAT has to be more particular than the one being analyzed) and the use
of the lub operator instead of the glb. Also, note that taking, for example, ⊥ as
an under-approximation is correct but SP−

all is more precise.
As shown in [13] using SP+ policies has the advantage that at any point

during the modular analysis, even when a fixpoint has not been reached yet, the
information obtained for each module is always a correct over-approximation.
The drawback is that when the fixpoint is reached it may not be minimal, i.e.,
information is not as precise as it could be. In contrast, SP− policies obtain the
least fixpoint (most precise information) but only produce correct results when
the fixpoint it reached. SP+ policies can be useful during program development.

Solving the Imported Calls Problem. As the analysis is context-sensitive,
the call patterns for imported predicates are only known after the calling module
is analyzed, but they cannot be processed until the imported module is selected
for (re)analysis. These call patterns are therefore stored in another global data
structure, the temporary answer table (TAT for short).2 When the imported
module is scheduled for (re)analysis, all call patterns in the TAT are used as
input for the analyzer.

2.4 Computing an Intermodular Fixed Point

The intermodular fixed-point algorithm of CiaoPP takes one module of the pro-
gram that needs (re)analysis, analyzes it storing the relevant information in GAT
and TAT tables, and looks for another module which needs reanalysis. When
a module is analyzed, it updates the entries in the global tables, and marks
the modules which import it if the analysis results may improve the results of
those modules. An intermodular fixed point has been reached when there are no
modules which need reanalysis.

Determining the optimal order in which the different modules in the program
unit should be analyzed in order to get to a fixed-point as efficiently as possible
is not trivial. Finding good scheduling strategies for intra-modular analysis is a
topic which has received considerable attention and highly optimized algorithms
exist which converge to a fixed-point quickly. Unfortunately, it is not possible to

2 In fact, GAT and TAT are implemented using the same table, and TAT entries
are marked as needing reanalysis, in order to provide more precise results than
those obtained applying the success policy, as soon as the module is scheduled for
(re)analysis. There are more details in Section 2.4 and [13].



Experiments in Context-Sensitive Analysis of Modular Programs 169

directly translate the same heuristics used in the intra-modular case to the inter-
modular case. In the inter-modular case we have to take into account the time
required to change from analysis of one module to another since this typically
means reading a new module from disk. Thus, requests to process call patterns
have to be grouped by modules in order to reduce the number of times we change
context.

In the current implementation two simple strategies have been used which
allow studying the behavior of the analysis of modular programs in two clearly
different situations. Both strategies take the list of modules in a given order
(a top-down and a bottom-up traversal of the intermodule dependency graph,
respectively),3 and traverse the list analyzing the modules which have pending
call patterns, updating the corresponding global tables with the analysis results.
This process is repeated until there are no pending call patterns for any module
in the program.

We will refer to this intermodular fixed-point algorithm, which schedules one
module at a time for analysis as the modular approach.

3 Empirical Results

As mentioned in Section 1, the framework has been fully implemented in CiaoPP.
This implementation allows performing both monolithic and modular analysis,
and the modular analysis is parametric in several ways. This makes it possible
to study the overall behavior of the system for different strategies and policies
and thus performing several experiments and comparisons:
Flattened vs. modular. First, the flattened approach of Section 2.2 has been

compared to the intermodular fixpoint of Section 2.4. Although it is pre-
dictable that the analysis of a program for the first time in a modular,
separate analysis fashion will be slower than the flattened approach (due to
the overhead in loading/unloading modules, etc.), it is interesting to study
by how much. On the other hand, in some cases the analysis of a whole
program may be unfeasible due to hardware (memory) limitations, but in
the intermodular fixpoint approach this limitation can be overcome.

Intermodular scheduling policies. Another aspect to study is related to the
influence of the module selection policy in the efficiency of the analysis. The
scheduling policies used have been already described in Section 2.4. We will
refer to them as naive top down and naive bottom up, respectively.

Success policies. Two success policies have been compared in both scheduling
policies: an over-approximating policy, SP+

all, and an under-approximating
one, SP−

all, as described in Section 2.3. Although there may be other success
policies, we estimate that these ones are the most effective policies, as they
bring the closest results to SP=.

Incremental analysis of modular programs. Finally, the analysis of a
modular program from scratch using the monolithic approach has been

3 All modules which belong to the same cycle in the graph have been considered at
the same depth, and therefore those modules will be selected in any order.



170 J. Correas et al.

compared to the reanalysis of that program after making specific modifi-
cations in the source code. This comparison illustrates the advantages of
analyzing only the module which has changed (and the modules affected by
that change) instead of reanalyzing the whole program from scratch.

Three different kinds of source code modifications have been studied: 1) a
simple change that keeps the same analysis results, 2) a change that results
in the exported predicates producing a more precise answer pattern, and
3) a modification in the source code such that after the change exported
predicates produce more general analysis results.

Note that when there are changes in the source code which do not im-
prove or invalidate previous analysis results, nor generate new call patterns
for imported modules (i.e., case 1 above), using the modular approach is
clearly advantageous (at least theoretically), since it is more incremental
and only one module needs to be analyzed after each change. In contrast,
in the monolithic (non-modular) analysis the whole program must be (re-)
analyzed.

The second kind of change studied represents a change that makes the
analysis results for exported predicates be more precise than the ones ob-
tained before. This is done by removing all clauses of exported predicates of a
module except the first non recursive one.4 This will bring in general analysis
results which are more specific than the results previously obtained, mak-
ing them invalid in most cases, and producing the reanalysis of the calling
modules.

The third type of source change corresponds to performing a modifica-
tion in an exported predicate which results in this predicate providing more
general analysis results. The change consists in the addition of a clause to
all the exported predicates of a module in which all arguments are pairwise
distinct and free variables.5 This approach generally forces the reanalysis of
the modules which use the changed module. In turn, this may transitively
require reanalysis of other modules until analysis information stabilizes.

In the following subsections the selected benchmark programs are described,
and the results of the tests are studied in detail. Two “modes” domains have been
considered: Def [7], which keeps track of properties (in particular, groundness)
through definite propositional implications and Sharing-freeness [10], which
keeps track of information on variable sharing and freeness in a combined way.

3.1 Brief Description of the Benchmarks Used

The central focus of this paper is to study how the intermodular analysis frame-
work of CiaoPP will behave with real-life programs. Therefore, we have striven in
4 Mutually recursive predicates are also considered. If the exported predicate has only

recursive clauses, they are replaced by a fact with all arguments ground.
5 In the Sharing − Freeness domain this addition might not provide a more general

analysis result, as this kind of clause does not provide a top success substitution.
However, the tests have been performed using the same change also in the case of
Sharing − Freeness to make the tests homogeneous across the different domains.



Experiments in Context-Sensitive Analysis of Modular Programs 171

the selection of benchmark programs to include not only characteristic examples
used in the LP analysis literature, but also other programs which are specially
difficult to analyze in a modular setting (for example, because there are several
mutually recursive predicates which conform intermodular cycles), and real-life
programs. A brief description of the selected benchmarks follows:

ann This is the &-Prolog implementation of the MEL annotator (by
K. Muthukumar, F. Bueno, M. Garćıa de la Banda, and M. Hermenegildo).
In this case the code is distributed in 3 modules with no cycles in the inter-
modular dependency graph.

bid This program computes an opening bid for a bridge hand (by J. Conery).
It is composed of 7 modules, with no cycles in the intermodular dependency
graph.

boyer The boyer benchmark is a reduced version of the Boyer/Moore theorem
prover (by E. Tick). The program has been separated in four modules with
a cycle between two modules.

peephole This program is the SB-Prolog peephole optimizer. In this case, the
program is split in three modules, but there are two cycles in the inter-
modular dependency graph, and there are several intermodular cycles at the
predicate call level.

prolog read corresponds to a simplified version of the code used by the Ciao
compiler for reading terms. It is composed by three modules, having a cycle
between two of them.

unfold is a fragment of the CiaoPP preprocessor which contains the partial
evaluator. It is distributed in 7 modules with no cycles between them, al-
though many other modules of CiaoPP source code, while not analyzed, are
consulted in order to get assertion information.

managing project is a program used by the authors for EU project manage-
ment. It is distributed in 8 modules with no intermodular cycles.

check links is an example program for the Pillow HTML/XML/HTTP con-
nectivity package (by D. Cabeza and M. Hermenegildo) that checks that
links contained in a given URL address are reachable. The whole Pillow
package is analyzed together with the sample program, and it is composed
of 6 modules without intermodular cycles.

It should be noted that for all these programs the number of modules indicated
above correspond to the user modules of the benchmark. However, they are not
the only ones processed: any benchmark is likely to use quite a large number of
modules from the system libraries. In particular, in Ciao all builtins are in system
libraries. For efficiency, library modules are pre-analyzed for a representative set
of call patterns and the analysis results are expressed using the assertion language
described in [12]. Instead of analysing library modules over and over again, the
analysis algorithm computes success information from such assertions using a
SP+ policy.

The benchmarks have been run on a Dell PowerEdge 4600 with two Pentium
processors at 2 Ghz and 4 Gb of memory, and normal workload. Each test has
been run twice, reporting the arithmetic mean of these runs.



172 J. Correas et al.

3.2 Analysis of a Modular Program from Scratch

Table 1 shows the absolute times in milliseconds spent in analyzing the programs
using the flattening approach. Mod reflects the number of modules comprising
each benchmark (excluding system modules). For every benchmark, the total
analysis time is divided into several categories, represented by the following
columns:

Load This column corresponds to the time spent loading modules into CiaoPP.
This time includes the time used for reading the module to be analyzed and
the time spent in reading the assertions of the imported modules.

Ana. This is the time spent analyzing the program and applying the success
policy for imported predicates together with some preprocessing of the code.

Gen. Corresponds to the task of generating the global information (referred to
before as the GAT and TAT tables). The information generated is related to
the analysis results of all exported and multifile predicates, new call patterns
of imported predicates generated during the analysis of each module, and
the modules that import the module and can improve their analysis results
by reanalysis.

Total Time elapsed since the analyzer is called until it finishes completely. It is
the sum of the previous columns, plus some extra time spent in other tasks,
such as the generation of the intermodular dependency graph, handling the
list of modules to get the next module to be analyzed, etc.

Table 1. Time spent (in milliseconds) by the monolithic analysis of different benchmark
programs

Def
Bench Mod Load Ana. Gen. Total
ann 3 387 343 170 1151

bid 8 631 35 182 1177

boyer 4 385 161 100 871

peephole 3 350 205 175 907

prolog read 3 343 279 370 1179

unfold 7 1622 540 117 2744

managing project 8 1154 6128 302 8025

check links 6 1492 3720 365 6002

Sharing-freeness
Bench Mod Load Ana. Gen. Total

ann 3 387 480 217 1513

bid 8 631 50 192 1400

boyer 4 385 181 102 1098

peephole 3 350 542 305 1643

prolog read 3 343 3112 633 4490

unfold 7 1622 521069 286 523692

managing project 8 1154 781 256 2911

check links 6 1492 4044 484 6706



Experiments in Context-Sensitive Analysis of Modular Programs 173

Table 2. Geometric overall results for analysis of modular programs from scratch
using different global scheduling algorithms and success policies. Numbers relative to
the monolithic approach.

automatic SP+
all automatic SP−

all

Type of test Load Ana. Gen. Total Load Ana. Gen. Total
Def top down 2.25 1.30 1.44 1.47 3.64 1.60 2.39 2.08

bot up 2.26 1.25 1.44 1.45 3.80 1.66 2.47 2.16

Shfr top down 2.23 20.51 1.83 11.60 3.85 3.13 2.65 3.51
bot up 2.23 20.02 1.68 11.43 3.96 3.14 2.75 3.53

Table 2 gives the summary of the weighted geometric means of the compara-
tive times for all benchmarks for the Def and Sharing-freeness analysis domains.
The numbers in this table are relative to the monolithic case (shown in Table 1),
and the number of clauses of each program is used as weight for each bench-
mark when computing the weighted geometric mean. The naive bottom up and
naive top down global scheduling policies are compared, as well as the SP−

all and
SP+

all success policies. Table columns have the same meaning as before.
This table shows the overall time spent in the analysis of the different bench-

marks without previous analysis information. It is clear that the modular analysis
from scratch, in general, is slower than monolithic analysis, as expected. Using
Def the intermodular analysis from scratch is only somewhat slower compared
to the monolithic analysis, and in particular the analysis time is not much larger
than the monolithic time in most cases. However, in simple domains like Def ,
the analysis time is not the most important fraction of the total time, and there-
fore other tasks such as module loading or results generation can in fact be more
relevant than the analysis itself. On the other hand, more complex domains
as Sharing − freeness increase the difference with respect to the monolithic
case. It is important to note that using SP+

all is clearly not recommended for
performing modular analysis from scratch in the Sharing − freeness domain.
The result in this case is biased a great deal by the results of the analysis of
managing project, in which most predicates have many arguments, resulting in
large sharing sets that tend to approximate to ) (which is the powerset of the
variables in the clause). However, SP−

all produces reasonable results.
On the other hand, when comparing the global scheduling policies, only a slight

difference in the time taken using the naive top down or the naive bottom up
strategies canbe observed.This result seems to reflect that the order of themodules
is not so relevant when analyzing a modular program as was initially expected.

Memory Consumption when analyzing from scratch. We have also compared the
maximum memory required for the analysis in the flattened and the modular
approaches to the analysis of modular programs from scratch. Table 3 shows
the maximum memory consumption during the analysis of the flattened ap-
proach (column Monolithic), and the use of memory of the modular approach
(using both global scheduling policies described before) relative to the mono-
lithic case (columns SP+

all and SP−
all for the corresponding success policies). The



174 J. Correas et al.

Table 3. Overall memory consumption of Non-modular vs. SP+ and SP− policies

Global scheduling policy: naive top down

Def Sharing-Freeness
Bench Mod Monolithic SP+ SP− Monolithic SP+ SP−

ann 3 2825160 0.69 0.49 4070806 0.54 0.39

bid 8 2201134 0.54 0.54 3241842 0.36 0.36

boyer 4 2405980 0.42 0.42 3495038 0.61 0.35

peephole 3 2390936 0.68 0.68 3761442 0.42 0.43

prolog read 3 2766260 0.53 0.51 5429194 0.84 0.84

unfold 7 5775798 0.54 0.54 16168722 0.31 0.37

managing project 8 5555454 0.32 0.32 6565038 3.65 0.26

check links 6 10431662 0.70 0.65 18643226 0.83 0.77

Weighted Geom. mean 0.48 0.46 1.12 0.40

Global scheduling policy: naive bottom up

Def Sharing-Freeness
Bench Mod Monolithic SP+ SP− Monolithic SP+ SP−

ann 3 2825160 0.52 0.49 4070806 0.54 0.39

bid 8 2201134 0.57 0.54 3241842 0.36 0.36

boyer 4 2405980 0.42 0.42 3495038 0.61 0.40

peephole 3 2390936 0.68 0.68 3761442 0.42 0.43

prolog read 3 2766260 0.53 0.51 5429194 0.84 0.84

unfold 7 5775798 0.54 0.54 16168722 0.31 0.37

managing project 8 5555454 0.33 0.33 6565038 3.65 0.28

check links 6 10431662 0.69 0.66 18643226 0.81 0.78

Weighted Geom. mean 0.47 0.47 1.11 0.41

results show that the modular approach is clearly better in terms of maximum
memory consumption than the monolithic approach, except for the outlying
result of managing project for the particular case of the combination SP+

all

and Sharing − freeness, as mentioned above. However, given a program split
into N modules, the memory used for analyzing it in a modular way might be
expected to be M/N , where M is the memory required for the monolithic anal-
ysis. This is not true because the complexity of the program is in general not
evenly distributed among its modules. Since Table 3 shows maximum memory
consumption, figures are strongly influenced by the most complex modules.

3.3 Reanalysis of a Modular Program After a Change in the Code

As explained at the beginning of Section 3, we have also studied the incremental
cost of reanalysis of a modular program after a change, for different typical
changes, as explained above.

In the first case, shown in Table 4, a simple change in a module with no
implications in the analysis results of that module has been tested. It has been
implemented by “touching” a module, i.e., changing the modification time with-
out actually modifying its contents, in order to force CiaoPP to reanalyze it. As



Experiments in Context-Sensitive Analysis of Modular Programs 175

Table 4. Geometric overall results for reanalysis of modular programs after touching
a module, using different global scheduling algorithms and success policies. Numbers
relative to the monolithic approach.

automatic SP+
all automatic SP−

all

Type of test Load Ana. Gen. Total Load Ana. Gen. Total
Def top down 0.68 0.39 0.19 0.44 0.63 0.38 0.19 0.43

bot up 0.66 0.41 0.20 0.45 0.65 0.38 0.19 0.43

Shfr top down 0.67 0.53 0.26 0.44 0.65 0.40 0.25 0.40
bot up 0.65 0.52 0.28 0.43 0.67 0.41 0.26 0.40

Table 5. Geometric overall results for reanalysis of modular programs after removing
all clauses of exported predicates of a module except the first non-recursive one, using
different global scheduling algorithms and success policies. Numbers relative to the
monolithic approach.

automatic SP+
all automatic SP−

all

Type of test Load Ana. Gen. Total Load Ana. Gen. Total
Def top down 0.97 0.18 0.33 0.45 0.99 0.20 0.33 0.46

bot up 0.97 0.18 0.32 0.45 1.00 0.20 0.34 0.46

Shfr top down 1.00 0.36 0.41 0.49 0.94 0.26 0.33 0.44
bot up 0.97 0.33 0.39 0.47 0.98 0.27 0.33 0.46

before, numbers refer to the geometric overall results, relative to those obtained
with the monolithic approach (Table 1). As it is suggested in the results shown
in Table 4, the modular analysis is clearly better than the monolithic approach
for this kind of change. Obviously, global scheduling and success policies are not
relevant, since only the module which has been modified is reanalyzed.

The second case (summarized in Table 5) corresponds to a source code modifi-
cation in which, as already mentioned, all the clauses of the exported predicates
of a given module have been replaced by the first non-recursive clause of the
predicate. As in the previous case, different policies do not seem to be very rel-
evant for this change. It is interesting to note that this kind of change is even
more efficient than just touching a module: since some part of the code is be-
ing removed, the analysis tends to be simplified (specially the recursive clauses,
which cause more iterations of the fixed-point computation algorithm).

And, finally, the third case shown in Table 6 is implemented by adding a
most general fact to all exported predicates of a given module. Like in the pre-
vious case, this kind of change is an extreme situation in which all exported
predicates are affected. Even in this case modular analysis is more efficient than
the monolithic approach. With respect to the differences between the success
policies, the SP− policy is slightly more efficient in complex domains such as
Sharing− freeness, although both policies and domains behave incrementally.
On the other hand, the bottom-up global scheduling policy produces better re-
sults than top-down scheduling.



176 J. Correas et al.

Table 6. Geometric overall results for reanalysis of modular programs after adding a
most general fact to all exported predicates of a module, using different global schedul-
ing algorithms and success policies. Numbers relative to the monolithic approach.

automatic SP+
all automatic SP−

all

Type of test Load Ana. Gen. Total Load Ana. Gen. Total
Def top down 1.09 0.63 0.43 0.70 1.05 0.59 0.42 0.66

bot up 1.02 0.58 0.40 0.64 1.04 0.60 0.43 0.66

Shfr top down 1.18 1.00 0.69 0.80 1.27 1.00 0.69 0.86
bot up 1.14 0.97 0.67 0.77 1.21 0.98 0.70 0.83

The overall results in Tables 4,5, and 6 indicate that in many cases the re-
analysis time is much better than in the monolithic case. It is important to note
that the analysis domain used is very relevant to the efficiency of the modu-
lar approach: the analysis of a complete program in complex domains such as
Sharing − freeness is much more expensive than the reanalysis of a module,
while the difference is smaller (although still significant) in the case of Def .
This suggests that modular analysis can make it practical to use domains which
are precise but rather costly. On the other hand, the results in Table 6 for re-
analysing after a more general change using Sharing−freeness are very close to
monolithic analysis from scratch, although still below it. That means that even
in the presence of the most agressive change in a module, modular analysis is
not more time-consuming than analyzing from scratch. Simpler changes provide
better results of the modular analysis with respect to the flattened approach, as
is shown in Tables 4 and 5 for other kinds of changes.

4 Conclusions

We have presented an empirical study of several proposed models for context-
sensitive analysis of modular programs, with the objective of providing experi-
mental evidence on the scalability of these models and, specially, on the impact
on performance of the different choices left open in those models.

Our results shed some light on the different choices available. In the case
of analyzing a modular program from scratch, the modular analysis approach
has been shown, as expected, to be slower than the flattening approach (i.e.,
having the complete program in memory, and analyzing it as a whole), due to
the cost in time of loading and unloading code and related analysis information,
and the restriction of not being able to analyze predicates in modules other
than the one being processed. However, the modular analysis times from scratch
are still reasonable, excluding the case of the Sharing − freeness domain with
SP+

all success policy. In addition, our results also provide evidence that modular
analysis does imply a lower maximum memory consumption which in some cases
may be of advantage since it may allow analyzing programs of a certain critical
size that would not fit in memory using the flattening approach.



Experiments in Context-Sensitive Analysis of Modular Programs 177

Across the domains we can see that in simple domains SP+
all and a naive

bottom up scheduling policy appear to be the best. These strategies appear sub-
stantially better for some experiments (in particular, for more general changes)
and not much worse than others on most experiments. Another conclusion which
can be derived from our experiments is that, as already mentioned, no really
significant difference has been observed between the top-down and bottom-up
strategies.

We have also considered the case of reanalyzing a previously analyzed pro-
gram, after making changes to it. This is relevant because it represents the stan-
dard situation during program development in which some modules change while
others (and the libraries) remain unchanged. While in this phase the analysis
results may not be needed in order to obtain highly optimized programs, they
are indeed required for other important steps during development, such as static
program debugging and validation. In this context our results show that modu-
lar analysis, because of its more incremental nature, can offer clear advantages
in both time and memory consumption over the monolithic approach.

Acknowledgements

The authors would like to thank Maŕıa Garćıa de la Banda, Kim Marriott, and
Peter Stuckey for many interesting discussions on analysis of modular programs.
This work was funded in part by the Information Society Technologies pro-
gramme of the European Commission, Future and Emerging Technologies under
projects FP5 IST-2001-38059 ASAP and FP6 IST-15905 MOBIUS, the Span-
ish Ministry of Science and Education under project TIC 2002-0055 CUBICO,
and FEDER infrastructure UNPM03-33-2. M. Hermenegildo is also supported
in part by the Prince of Asturias Chair in Information Science and Technology
at the University of New Mexico. Part of this work was performed during a re-
search stay of Germán Puebla at Roskilde University supported by a grant from
the Secretaŕıa de Estado de Educación y Universidades.

References

1. F. Besson and T. Jensen. Modular class analysis with datalog. In 10th International
Symposium on Static Analysis, SAS 2003, number 2694 in LNCS. Springer, 2003.

2. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and G. Puebla
(Eds.). The Ciao System. Reference Manual (v1.10). The ciao system documen-
tation series–TR, School of Computer Science, Technical University of Madrid
(UPM), June 2004. System and on-line version of the manual available at
http://clip.dia.fi.upm.es/Software/Ciao/.

3. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Stan-
dard Prolog Programs. In European Symposium on Programming, number 1058 in
LNCS, pages 108–124, Sweden, April 1996. Springer-Verlag.

4. F. Bueno, M. Garćıa de la Banda, M. Hermenegildo, K. Marriott, G. Puebla, and
P. Stuckey. A Model for Inter-module Analysis and Optimizing Compilation. In
Logic-based Program Synthesis and Transformation, number 2042 in LNCS, pages
86–102. Springer-Verlag, March 2001.



178 J. Correas et al.

5. D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In Interna-
tional Conference on Computational Logic, CL2000, number 1861 in LNAI, pages
131–148. Springer-Verlag, July 2000.

6. P. Cousot and R. Cousot. Modular Static Program Analysis, invited paper. In
Eleventh International Conference on Compiler Construction, CC 2002, number
2304 in LNCS, pages 159–178. Springer, 2002.

7. M. Garćıa de la Banda and M. Hermenegildo. A Practical Approach to the Global
Analysis of Constraint Logic Programs. In 1993 International Logic Programming
Symposium, pages 437–455. MIT Press, October 1993.

8. Maŕıa J. Garćıa de la Banda, Bart Demoen, Kim Marriott, and Peter J. Stuckey.
To the Gates of HAL: A HAL Tutorial. In International Symposium on Functional
and Logic Programming, pages 47–66, 2002.

9. Manuel V. Hermenegildo, Germán Puebla, Francisco Bueno, and Pedro López-
Garćıa. Integrated Program Debugging, Verification, and Optimization Using Ab-
stract Interpretation (and The Ciao System Preprocessor). Science of Computer
Programming, 58(1–2):115–140, October 2005.

10. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and
Freeness of Program Variables Through Abstract Interpretation. In 1991 Interna-
tional Conference on Logic Programming, pages 49–63. MIT Press, June 1991.

11. Nicholas Nethercote. The Analysis System of HAL. Master’s thesis, Monash Uni-
versity, 2002.

12. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors,
Analysis and Visualization Tools for Constraint Programming, number 1870 in
LNCS, pages 23–61. Springer-Verlag, September 2000.

13. G. Puebla, J. Correas, M. Hermenegildo, F. Bueno, M. Garćıa de la Banda, K. Mar-
riott, and P. J. Stuckey. A Generic Framework for Context-Sensitive Analysis of
Modular Programs. In M. Bruynooghe and K. Lau, editors, Program Development
in Computational Logic, A Decade of Research Advances in Logic-Based Program
Development, number 3049 in LNCS, pages 234–261. Springer-Verlag, Heidelberg,
Germany, August 2004.

14. G. Puebla and M. Hermenegildo. Some Issues in Analysis and Specialization of
Modular Ciao-Prolog Programs. In Special Issue on Optimization and Implemen-
tation of Declarative Programming Languages, volume 30 of Electronic Notes in
Theoretical Computer Science. Elsevier - North Holland, March 2000.



Author Index

Albert, Elvira 115, 147
Álvez, Javier 61
Antoy, Sergio 6

Bueno, Francisco 163

Correas, Jesús 163

Fages, François 1

Gallagher, John P. 115, 147
Gupta, Gopal 44

Hanus, Michael 6
Hermenegildo, Manuel V. 80, 163

Kobayashi, Naoki 98

Lucio, Paqui 61

Mallya, Ajay 44

Navarro, Marisa 133

Ochoa, Claudio 80
Orejas, Fernando 133

Pasarella, Edelmira 133
Pettorossi, Alberto 23
Pino, Elvira 133
Proietti, Maurizio 23
Puebla, Germán 80, 115, 147, 163

Senni, Valerio 23
Simon, Luke 44
Suenaga, Kohei 98

Yonezawa, Akinori 98


	Frontmatter
	Temporal Logic Constraints in the Biochemical Abstract Machine BIOCHAM
	Tools for Program Development
	Declarative Programming with Function Patterns
	Transformational Verification of Parameterized Protocols Using Array Formulas
	Design and Implementation of ${\mathcal A}_T$: A Real-Time Action Description Language

	Program Transformations
	An Algorithm for Local Variable Elimination in Normal Logic Programs
	Removing Superfluous Versions in Polyvariant Specialization of Prolog Programs
	Extension of Type-Based Approach to Generation of Stream-Processing Programs by Automatic Insertion of Buffering Primitives
	Non-leftmost Unfolding in Partial Evaluation of Logic Programs with Impure Predicates

	Software Development and Program Analysis
	A Transformational Semantics of Static Embedded Implications of Normal Logic Programs
	Converting One Type-Based Abstract Domain to Another
	Experiments in Context-Sensitive Analysis of Modular Programs

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




